×

Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential operators. (English) Zbl 07380433

Summary: Given a linear self-adjoint differential operator \(\mathscr{L}\) along with a discretization scheme (like Finite Differences, Finite Elements, Galerkin Isogeometric Analysis, etc.), in many numerical applications it is crucial to understand how good the (relative) approximation of the whole spectrum of the discretized operator \(\mathscr{L}^{(n)}\) is, compared to the spectrum of the continuous operator \(\mathscr{L}\). The theory of Generalized Locally Toeplitz sequences allows to compute the spectral symbol function \(\omega\) associated to the discrete matrix \(\mathscr{L}^{(n)}\). Inspired by a recent work by T. J. R. Hughes and coauthors, we prove that the symbol \(\omega\) can measure, asymptotically, the maximum spectral relative error \(\mathscr{E}\geq 0\). It measures how the scheme is far from a good relative approximation of the whole spectrum of \(\mathscr{L}\), and it suggests a suitable (possibly non-uniform) grid such that, if coupled to an increasing refinement of the order of accuracy of the scheme, guarantees \(\mathscr{E}=0\).

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
35P05 General topics in linear spectral theory for PDEs
65N99 Numerical methods for partial differential equations, boundary value problems
65D25 Numerical differentiation
65F99 Numerical linear algebra

References:

[1] Adriani, A.; Bianchi, D.; Serra-Capizzano, S., Asymptotic spectra of large (Grid) graphs with a uniform local structure (Part It, Milan J. Math., 88, 409-454 (2020) · Zbl 1464.05224 · doi:10.1007/s00032-020-00319-2
[2] Amodio, P.; Sgura, I., High-order finite difference schemes for the solution of second-order BVPs, J. Comput. Appl. Math., 176, 1, 59-76 (2005) · Zbl 1073.65061 · doi:10.1016/j.cam.2004.07.008
[3] Amodio, P.; Settani, G., A matrix method for the solution of Sturm-Liouville problems, JNAIAM, 6, 1-2, 1-13 (2011) · Zbl 1432.65107
[4] Askey, R.; Steinig, J., Some positive trigonometric sums, Trans. Amer. Math. Soc., 187, 295-307 (1974) · Zbl 0244.42002 · doi:10.1090/S0002-9947-1974-0338481-3
[5] Barbarino, G., Equivalence between GLT sequences and measurable functions, Linear Algebra Appl., 529, 397-412 (2017) · Zbl 1459.47009 · doi:10.1016/j.laa.2017.04.039
[6] Barbarino, G.; Bini, D.; Di Benedetto, F.; Tyrtyshnikov, E.; Van Barel, M., Spectral measures, Structured Matrices in Numerical Linear Algebra (2019), Cham: Springer, Cham · Zbl 1446.15013
[7] Bazilevs, Y.; Beirao da Veiga, L.; Cottrell, JA; Hughes, TJR; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 7, 1031-1090 (2006) · Zbl 1103.65113 · doi:10.1142/S0218202506001455
[8] Bianchi, D.; Serra-Capizzano, S., Spectral analysis of finite-dimensional approximations of 1d waves in non-uniform grids, Calcolo, 55, 47, 1-28 (2018) · Zbl 1448.65216
[9] Bogoya, JM; Böttcher, A.; Grudsky, SM; Maximenko, EA, Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols, J. Math. Anal. Appl., 442, 2, 1308-1334 (2015) · Zbl 1302.65086 · doi:10.1016/j.jmaa.2014.09.057
[10] Böttcher, A.; Grudsky, SM, Toeplitz Matrices, Asymptotic Linear Algebra and Functional Analysis (2000), Berlin: Springer, Berlin · Zbl 0969.47022
[11] Böttcher, A.; Silbermann, B., Analysis of Toeplitz Operators (2006), Berlin: Springer, Berlin · Zbl 1098.47002
[12] Carasso, A., Finite-difference methods and the eigenvalue problem for nonselfadjoint Sturm-Liouville operators, Math. Comp., 23, 108, 717-729 (1969) · Zbl 0185.41601 · doi:10.1090/S0025-5718-1969-0258291-7
[13] Chiti, G.; Pucci, C., Rearrangements of functions and convergence in Orlicz spaces, Appl. Anal., 9, 1, 23-27 (1979) · Zbl 0424.46023 · doi:10.1080/00036817908839248
[14] Chung, KL, A Course in Probability Theory (2001), Cambridge: Academic Press, Cambridge
[15] Cottrell, JA; Hughes, TJR; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), Hoboken: John Wiley, Hoboken · Zbl 1378.65009 · doi:10.1002/9780470749081
[16] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100, 1, 32-74 (1928) · JFM 54.0486.01 · doi:10.1007/BF01448839
[17] Davies, EB, Spectral Theory and Differential Operators (1996), Cambridge: Cambridge University Press, Cambridge
[18] Di Benedetto, F.; Fiorentino, G.; Serra-Capizzano, S., CG preconditioning for Toeplitz matrices, Comput. Math. Appl., 25, 6, 35-45 (1993) · Zbl 0782.65063 · doi:10.1016/0898-1221(93)90297-9
[19] Ekström, S-E; Furci, I.; Garoni, C.; Manni, C.; Serra-Capizzano, S.; Speleers, H., Are the eigenvalues of the B-spline isogeometric analysis approximation of \(-\Delta u = \lambda u\) known in almost closed form?, Numer. Linear Algebra Appl., 25, 5, e2198 (2018) · Zbl 1513.65454 · doi:10.1002/nla.2198
[20] Ervedoza, S.; Marica, A.; Zuazua, E., Numerical meshes ensuring uniform observability of onedimensional waves: construction and analysis, IMA J. Numer. Anal., 36, 503-542 (2016) · Zbl 1433.65157 · doi:10.1093/imanum/drv026
[21] Everitt, WN; Markus, L., Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-differential Operators (1999), Providence: American Mathematical Society, Providence · Zbl 0909.34001
[22] Garoni, C.; Serra-Capizzano, S., Generalized Locally Toeplitz Sequences: Theory and Applications (2017), Cham: Springer, Cham · Zbl 1376.15002 · doi:10.1007/978-3-319-53679-8
[23] Garoni, C.; Serra-Capizzano, S., Generalized Locally Toeplitz Sequences: Theory and Applications (2018), Cham: Springer, Cham · Zbl 1448.47004 · doi:10.1007/978-3-030-02233-4
[24] Garoni, C.; Speleers, H.; Ekström, S-E; Reali, A.; Serra-Capizzano, S.; Hughes, TJR, Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: exposition and review, Arch. Computat. Methods Eng., 26, 5, 1639-1690 (2019) · doi:10.1007/s11831-018-9295-y
[25] Gary, J., Computing eigenvalues of ordinary differential equations by finite differences, Math. Comp., 19, 91, 365-379 (1965) · Zbl 0131.14302 · doi:10.1090/S0025-5718-1965-0179926-X
[26] Grenander, U.; Szegö, G., Toeplitz Forms and their Applications (1958), Berkeley: University of California Press, Berkeley · Zbl 0080.09501 · doi:10.1063/1.3062237
[27] Hughes, TJR; Evans, JA; Reali, A., Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Eng., 272, 290-320 (2014) · Zbl 1296.65148 · doi:10.1016/j.cma.2013.11.012
[28] Infante, JA; Zuazua, E., Boundary observability for the space semi discretizations of the 1-d wave equation, Math. Model. Num. Ann., 33, 407-438 (1999) · Zbl 0947.65101 · doi:10.1051/m2an:1999123
[29] Kallenberg, O., Foundations of Modern Probability (2021), Switzerland AG: Springer Nature, Switzerland AG · Zbl 1478.60001 · doi:10.1007/978-3-030-61871-1
[30] Khan, IR; Ohba, R., Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series, J. Comput. Appl. Math., 107, 2, 179-193 (1999) · Zbl 0939.65031 · doi:10.1016/S0377-0427(99)00088-6
[31] Kuipers, L.; Niederreiter, H., Uniform Distribution of Sequences (1974), New York: John Wiley & Sons Inc, New York · Zbl 0281.10001
[32] Levendorskii, S., Asymptotic Distribution of Eigenvalues of Differential Operators (1990), Berlin: Springer Science & Business Media, Berlin · Zbl 0721.35049 · doi:10.1007/978-94-009-1918-1
[33] Li, J., General explicit difference formulas for numerical differentiation, J. Comput. Appl. Math., 183, 1, 29-52 (2005) · Zbl 1077.65021 · doi:10.1016/j.cam.2004.12.026
[34] Limic, V.; Limić, N., Equidistribution, uniform distribution: a probabilist’s perspective, Probab. Surv., 15, 131-155 (2018) · Zbl 1395.60001 · doi:10.1214/17-PS295
[35] Marica, A.; Zuazua, E., Propagation of 1D waves in regular discrete heterogeneous media: a Wigner measure approach, Found. Comput. Math., 15, 6, 1571-1636 (2015) · Zbl 1375.81163 · doi:10.1007/s10208-014-9232-x
[36] Pólya, G., Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem, Math. Z., 8, 3-4, 171-181 (1920) · JFM 47.0484.03 · doi:10.1007/BF01206525
[37] Puzyrev, V.; Deng, Q.; Calo, V., Spectral approximation properties of isogeometric analysis with variable continuity, Comput. Methods Appl. Mech. Eng., 334, 22-39 (2018) · Zbl 1440.65254 · doi:10.1016/j.cma.2018.01.042
[38] Safarov, Yu; Vassilev, D., The Asymptotic Distribution of Eigenvalues of Partial Differential Operators (1997), Providence: American Mathematical Society, Providence
[39] Serra-Capizzano, S., An ergodic theorem for classes of preconditioned matrices, Linear Algebra Appl., 282, 1-3, 161-183 (1998) · Zbl 0935.65026 · doi:10.1016/S0024-3795(98)80002-5
[40] Serra-Capizzano, S., A note on the asymptotic spectra of finite difference discretizations of second order elliptic partial differential equations, Asian J. Math., 4, 3, 499-514 (2000) · Zbl 0995.65107 · doi:10.4310/AJM.2000.v4.n3.a1
[41] Serra-Capizzano, S., Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations, Linear Algebra Appl., 366, 371-402 (2003) · Zbl 1028.65109 · doi:10.1016/S0024-3795(02)00504-9
[42] Serra-Capizzano, S., The GLT class as a generalized Fourier analysis and applications, Linear Algebra Appl., 419, 180-233 (2006) · Zbl 1109.65032 · doi:10.1016/j.laa.2006.04.012
[43] Smith, GD, Numerical Solution of Partial Differential Equations: Finite Difference Methods (1985), Oxford: Clarendon Press, Oxford · Zbl 0576.65089
[44] Stein, EM; Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces (1971), Princeton: Princeton University Press, Princeton · Zbl 0232.42007
[45] Talenti, G.; Fasano, A.; Primicerio, M., Rearrangements of functions and partial differential equations, Nonlinear Diffusion Problems, 153-178 (1986), Berlin: Springer, Berlin · Zbl 0607.65077 · doi:10.1007/BFb0072690
[46] Talenti, G., The art of rearranging, Milan J. Math., 84, 105-157 (2016) · Zbl 1364.35006 · doi:10.1007/s00032-016-0253-6
[47] Taylor, JC, An Introduction to Measure and Probability (1997), Berlin: Springer, Berlin · Zbl 0863.60001 · doi:10.1007/978-1-4612-0659-0
[48] Tilli, P., Locally Toeplitz sequences: spectral properties and applications, Linear Algebra Appl., 278, 1-3, 91-120 (1998) · Zbl 0934.15009 · doi:10.1016/S0024-3795(97)10079-9
[49] Tyrtyshnikov, EE, A unifying approach to some old and new theorems on distribution and clustering, Linear Algebra Appl., 232, 1-43 (1996) · Zbl 0841.15006 · doi:10.1016/0024-3795(94)00025-5
[50] Tyrtyshnikov, EE; Zamarashkin, N., Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships, Linear Algebra Appl., 270, 15-27 (1998) · Zbl 0890.15006 · doi:10.1016/S0024-3795(97)80001-8
[51] Widom, H., On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc., 88, 2, 491-522 (1958) · Zbl 0101.09202 · doi:10.1090/S0002-9947-1958-0098321-8
[52] Zettl, A., Sturm-Liouville Theory (2005), Providence: American Mathematical Society, Providence · Zbl 1103.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.