×

Voltage-controlled instability transitions and competitions in a finitely deformed dielectric elastomer tube. (English) Zbl 07278782

Summary: This work compares the transition and competitive mechanism between three types of instabilities of an incompressible dielectric tube: wrinkling, pull-in instability and electric breakdown. We also see how to select one type of instability mode on demand. First, we investigate the finite response and the wrinkling of a tube subject to a combination of applied radial voltage, torsion and axial force (or stretch). We use the surface impedance matrix method to determine the wrinkling threshold, and obtain the corresponding two-dimensional pattern shape of wrinkled surface. Second, we look at illustrative numerical calculations for ideal Mooney-Rivlin dielectrics and study the effects of actuation methods, electric voltage, torsion and geometrical parameters on the three types of instabilities. Results show that the deformation of the solid will influence the true electric field in the solid, and induce competitive effects between the applied voltage and the mechanical loading. We find that in addition to the expected contractile buckling, buckling may also occur in extension in an electrically actuated dielectric tube, a departure from the purely elastic wrinkling. Moreover, the electro-elastic behavior of the DE elastomer can be enhanced by introducing torsion. We also find that large stable actuation can be achieved and that the wrinkling pattern can be selected on demand in the tube by finely tuning the actuation, voltage, torsion and geometry, without encountering material failure.

MSC:

74-XX Mechanics of deformable solids
78-XX Optics, electromagnetic theory
Full Text: DOI

References:

[1] Arora, S.; Ghosh, T.; Muth, J., Dielectric elastomer based prototype fiber actuators, Sensors and Actuators A: Physical, 136, 1, 321-328 (2007)
[2] Batra, R. C.; Mueller, I.; Strehlow, P., Treloar’s biaxial tests and Kearsley’s bifurcation in rubber sheets, Mathematics and Mechanics of Solids, 10, 6, 705-713 (2005) · Zbl 1133.74016
[3] Bertoldi, K.; Gei, M., Instabilities in multilayered soft dielectrics, Journal of the Mechanics and Physics of Solids, 59, 1, 18-42 (2011) · Zbl 1225.74039
[4] Biot, M. A., Mechanics of incremental deformations (1965), John Wiley: John Wiley New York
[5] Bortot, E.; Shmuel, G., Prismatic bifurcations of soft dielectric tubes, International Journal of Engineering Science, 124, 104-114 (2018) · Zbl 1423.74299
[6] Brochu, P.; Pei, Q., Dielectric elastomers for actuators and artificial muscles, Electroactivity in polymeric materials, 1-56) (2012), Springer: Springer Boston, MA
[7] Brown, N. M.; Lai, F. C., Electrohydrodynamic gas pump in a vertical tube, Journal of Electrostatics, 67, 4, 709-714 (2009)
[8] Cameron, C. G.; Szabo, J. P.; Johnstone, S.; Massey, J.; Leidner, J., Linear actuation in coextruded dielectric elastomer tubes, Sensors and Actuators A: Physical, 147, 1, 286-291 (2008)
[9] Carpi, F.; De Rossi, D., Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation, Materials Science and Engineering: C, 24, 4, 555-562 (2004)
[10] Che, S.; Lu, T.; Wang, T. J., Electromechanical phase transition of a dielectric elastomer tube under internal pressure of constant mass, Theoretical and Applied Mechanics Letters, 7, 3, 121-125 (2017)
[11] Ciarletta, P.; Destrade, M., Torsion instability of soft solid cylinders, The IMA Journal of Applied Mathematics, 79, 5, 804-819 (2014) · Zbl 1299.74103
[12] Destrade, M.; Annaidh, A. N.; Coman, C. D., Bending instabilities of soft biological tissues, International Journal of Solids and Structures, 46, 25-26, 4322-4330 (2009) · Zbl 1176.74068
[13] Dissado, L. A.; Fothergill, J. C., Electrical degradation and breakdown in polymers, 9 (1992), Iet
[14] Dorfmann, A.; Ogden, R. W., Nonlinear electroelasticity, Acta Mechanica, 174, 3-4, 167-183 (2005) · Zbl 1066.74024
[15] Dorfmann, A.; Ogden, R. W., Nonlinear electroelastic deformations, Journal of Elasticity, 82, 2, 99-127 (2006) · Zbl 1091.74014
[16] Dorfmann, L.; Ogden, R. W., Nonlinear theory of electroelastic and magnetoelastic interactions (2016), Springer: Springer New York · Zbl 1291.78002
[17] Dorfmann, L.; Ogden, R. W., Nonlinear electroelasticity: Material properties, continuum theory and applications, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473, 2204, 20170311 (2017) · Zbl 1404.74017
[18] Duduta, M.; Hajiesmaili, E.; Zhao, H.; Wood, R. J.; Clarke, D. R., Realizing the potential of dielectric elastomer artificial muscles, Proceedings of the National Academy of Sciences, 116, 7, 2476-2481 (2019)
[19] Fu, Y.; Dorfmann, L.; Xie, Y., Localized necking of a dielectric membrane, Extreme Mechanics Letters, 21, 44-48 (2018)
[20] Fu, Y.; Xie, Y.; Dorfmann, L., A reduced model for electrodes-coated dielectric plates, International Journal of Non-Linear Mechanics, 106, 60-69 (2018)
[21] Gei, M.; Colonnelli, S.; Springhetti, R., The role of electrostriction on the stability of dielectric elastomer actuators, International Journal of Solids and Structures, 51, 3-4, 848-860 (2014)
[22] Getz, R.; Kochmann, D. M.; Shmuel, G., Voltage-controlled complete stopbands in two-dimensional soft dielectrics, International Journal of Solids and Structures, 113, 24-36 (2017)
[23] Goriely, A.; Vandiver, R.; Destrade, M., Nonlinear euler buckling, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464, 2099, 3003-3019 (2008) · Zbl 1152.74342
[24] Goshkoderia, A.; Rudykh, S., Electromechanical macroscopic instabilities in soft dielectric elastomer composites with periodic microstructures, European Journal of Mechanics-A/Solids, 65, 243-256 (2017) · Zbl 1406.74215
[25] Huang, J.; Li, T.; Chiang Foo, C.; Zhu, J.; Clarke, D. R.; Suo, Z., Giant, voltage-actuated deformation of a dielectric elastomer under dead load, Applied Physics Letters, 100, 4, 041911 (2012)
[26] Lu, T.; An, L.; Li, J.; Yuan, C.; Wang, T. J., Electro-mechanical coupling bifurcation and bulging propagation in a cylindrical dielectric elastomer tube, Journal of the Mechanics and Physics of Solids, 85, 160-175 (2015)
[27] Melnikov, A.; Ogden, R. W., Bifurcation of finitely deformed thick-walled electroelastic cylindrical tubes subject to a radial electric field, Zeitschrift fr angewandte Mathematik und Physik, 69, 3, 60 (2018) · Zbl 1393.74010
[28] Ogden, R. W., Non-linear elastic deformations (1997), Courier Corporation
[29] O’Halloran, A.; O’malley, F.; McHugh, P., A review on dielectric elastomer actuators, technology, applications, and challenges, Journal of Applied Physics, 104, 7, 9 (2008)
[30] Pang, W.; Cheng, X.; Zhao, H.; Guo, X.; Ji, Z.; Li, G.; Zhang, Y., Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms, National Science Review, 7, 2, 342-354 (2020)
[31] Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J., High-speed electrically actuated elastomers with strain greater than 100
[32] Pelrine, R. E.; Kornbluh, R. D.; Joseph, J. P., Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sensors and Actuators A: Physical, 64, 1, 77-85 (1998)
[33] Plante, J. S.; Dubowsky, S., Large-scale failure modes of dielectric elastomer actuators, International Journal of Solids and Structures, 43, 25-26, 7727-7751 (2006) · Zbl 1120.74789
[34] Poya, R.; Gil, A. J.; Ortigosa, R.; Sevilla, R.; Bonet, J.; Wall, W. A., A curvilinear high order finite element framework for electromechanics: From linearised electro-elasticity to massively deformable dielectric elastomers, Computer Methods in Applied Mechanics and Engineering, 329, 75-117 (2018) · Zbl 1439.74461
[35] Rasmussen, L., Electroactivity in polymeric materials (2012), Springer Science & Business Media
[36] Rivlin, R. S.; Saunders, D. W., Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243, 865, 251-288 (1951) · Zbl 0042.42505
[37] Romeo, M., Micromorphic continuum model for electromagnetoelastic solids, Zeitschrift für angewandte Mathematik und Physik, 62, 3, 513-527 (2011) · Zbl 1264.74053
[38] Shmuel, G.; deBotton, G., Axisymmetric wave propagation in finitely deformed dielectric elastomer tubes, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469, 2155, 20130071 (2013)
[39] Singh, M., Controllable states in compressible elastic dielectrics, Zeitschrift fr angewandte Mathematik und Physik ZAMP, 17, 3, 449-453 (1966)
[40] Stark, K. H.; Garton, C. G., Electric strength of irradiated polythene, Nature, 176, 4495, 1225-1226 (1955)
[41] Stoyanov, H.; Kofod, G.; Gerhard, R., A co-axial dielectric elastomer actuator, Advances in science and technology, 61, 81-84) (2008), Trans Tech Publications
[42] Su, Y.; Broderick, H. C.; Chen, W.; Destrade, M., Wrinkles in soft dielectric plates, Journal of the Mechanics and Physics of Solids, 119, 298-318 (2018)
[43] Su, Y.; Wu, B.; Chen, W.; Destrade, M., Finite bending and pattern evolution of the associated instability for a dielectric elastomer slab, International Journal of Solids and Structures, 158, 191-209 (2019)
[44] Su, Y.; Zhou, W.; Chen, W.; Lü, C., On buckling of a soft incompressible electroactive hollow cylinder, International Journal of Solids and Structures, 97, 400-416 (2016)
[45] Su, Y. P.; Wang, H. M.; Zhang, C. L.; Chen, W. Q., Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields, International Journal of Solids and Structures, 81, 262-273 (2016)
[46] Wang, F.; Yuan, C.; Lu, T.; Wang, T. J., Anomalous bulging behaviors of a dielectric elastomer balloon under internal pressure and electric actuation, Journal of the Mechanics and Physics of Solids, 102, 1-16 (2017)
[47] Wang, Q.; Gossweiler, G. R.; Craig, S. L.; Zhao, X., Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning, Nature communications, 5, 1, 1-9 (2014)
[48] Wang, Y.; Li, Z.; Qin, L.; Caddy, G.; Yap, C. H.; Zhu, J., Dielectric elastomer fluid pump of high pressure and large volume via synergistic snap-through, Journal of Applied Mechanics, 85, 10, 121011 (2018), (7 pages)
[49] Wu, B.; Su, Y.; Chen, W.; Zhang, C., On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields, Journal of the Mechanics and Physics of Solids, 99, 116-145 (2017)
[50] Yang, J.; Hu, Y., Mechanics of electroelastic bodies under biasing fields, Applied Mechanics Review, 57, 3, 173-189 (2004)
[51] Zhang, H.; Wang, Y.; Godaba, H.; Khoo, B. C.; Zhang, Z.; Zhu, J., Harnessing dielectric breakdown of dielectric elastomer to achieve large actuation, Journal of applied mechanics, 84, 12 (2017)
[52] Zhao, X.; Suo, Z., Method to analyze electromechanical stability of dielectric elastomers, Applied Physics Letters, 91, 6, 061921 (2007)
[53] Zhu, J.; Stoyanov, H.; Kofod, G.; Suo, Z., Large deformation and electromechanical instability of a dielectric elastomer tube actuator, Journal of Applied Physics, 108, 7, 074113 (2010)
[54] Zurlo, G.; Destrade, M.; DeTommasi, D.; Puglisi, G., Catastrophic thinning of dielectric elastomers, Physical review letters, 118, 7, 078001 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.