×

Statistical inference for mean function of longitudinal imaging data over complicated domains. (English) Zbl 1540.62052

Summary: We propose a novel procedure for estimating the mean function of longitudinal imaging data with inherent spatial and temporal correlation. We depict the dependence between temporally ordered images using a functional moving average, and use flexible bivariate splines over triangulations to handle the irregular domain of images which is common in imaging studies. We establish both the global and the local asymptotic properties of the bivariate spline estimator for the mean function, with simultaneous confidence corridors (SCCs) as a theoretical byproduct. Under some mild conditions, the proposed estimator and its accompanying SCCs are shown to be consistent and oracle efficient, as th ough all images were entirely observed without errors. We use Monte Carlo simulation experiments to demonstrate the finite-sample performance of the proposed method, the results of which strongly corroborate the asymptotic theory. The proposed method is further illustrated by analyzing two seawater potential temperature data sets.

MSC:

62G08 Nonparametric regression and quantile regression
62G15 Nonparametric tolerance and confidence regions
62G20 Asymptotic properties of nonparametric inference
62M40 Random fields; image analysis

Software:

fregion
Full Text: DOI

References:

[1] Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Springer-Verlag, New York. · Zbl 0962.60004
[2] Cai, T. T. and Yuan, M. (2011). Optimal estimation of the mean function based on discretely sampled functional data: Phase transition. Ann. Statist. 39, 2330-2355. · Zbl 1231.62040
[3] Cao, G., Wang, L., Li, Y. and Yang, L. (2016). Oracle-efficient confidence envelopes for covariance functions in dense functional data. Statist. Sinica 26, 359-383 · Zbl 1419.62071
[4] Cao, G., Yang, L. and Todem, D. (2012). Simultaneous inference for the mean function based on dense functional data. J. Nonparametr Stat. 24, 359-377. · Zbl 1241.62119
[5] Choi, H. and Reimherr, M. (2018). A geometric approach to confidence regions and bands for functional parameters. J. R. Stat. Soc. Ser. B Stat. Methodol. 80, 239-260. · Zbl 1381.62143
[6] French, J. P. and Kokoszka, P. S. (2020). A sandwich smoother for spatio-temporal functional data. Spat. Stat. 42, 100413.
[7] Ferraccioli, F., Arnone, E., Finos, L., Ramsay, J. O. and Sangalli, L. M. (2021). Nonparametric density estimation over complicated domains. J. R. Stat. Soc. Ser. B Stat. Methodol., 83, 346-368. · Zbl 07555268
[8] George, B., Denney, Jr., Thomas, G. H., DelItalia, L. and Aban, I. (2016) Applying a spatiotemporal model for longitudinal cardiac imaging data. Ann. Appl. Stat. 1, 527-548.
[9] George, B. and Aban, I. (2015). Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data. Stat. Med. 34, 145-161.
[10] Gu, L., Wang, L., Härdle, W. and Yang, L. (2014). A simultaneous confidence corridor for varying coefficient regression with sparse functional data. TEST 23, 806-843. · Zbl 1312.62051
[11] Gu, L. and Yang, L. (2015). Oracally efficient estimation for single-index link function with simultaneous confidence band. Electron. J. Stat. 9, 1540-1561. · Zbl 1327.62254
[12] Kokoszka, P. and Reimherr, M. (2019). Some recent developments in inference for geostatistical functional data. Rev. Colombiana Mat. 42, 101-122. · Zbl 1435.62413
[13] Lai, M.-J. and Schumaker, L. L. (2007). Spline Functions on Triangulations. Cambridge University Press, Cambridge. · Zbl 1185.41001
[14] Lai, M. J. and Wang, L. (2013). Bivariate penalized splines for regression. Statist. Sinica 23, 1399-1417. · Zbl 1534.62052
[15] Li, J. and Yang, L. (2023). Statistical inference for the functional time series. Statist. Sinica 33, 519-549. · Zbl 1540.62222
[16] Ma, S. (2014). A plug-in the number of knots selector for polynomial spline regression. J. Nonparametr Stat. 26, 489-507. · Zbl 1305.62151
[17] Ma, S., Yang, L. and Carroll, R. (2012). A simultaneous confidence band for sparse longitudinal regression. Statist. Sinica 22, 95-122. · Zbl 1417.62088
[18] Wang, Y., Wang, G., Wang, L. and Ogden, R. T. (2020). Simultaneous confidence corridors for mean functions in functional data analysis of imaging data. Biometrics 76, 427-437. · Zbl 1451.62175
[19] Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102, 14150-14154. · Zbl 1135.62075
[20] Yu, S., Wang, G., Wang, L., Liu, C. and Yang, L. (2020). Estimation and inference for generalized geoadditive models. J. Amer. Statist. Assoc. 115, 761-774. · Zbl 1445.62112
[21] Yu, S., Wang, G., Wang, L. and Yang, L. (2021). Multivariate spline estimation and inference for image-on-scalar regression. Statist. Sinica 31, 1463-1487. · Zbl 1478.62126
[22] Zheng, S., Yang, L. and Härdle, W. (2014). A smooth simultaneous confidence corridor for the mean of sparse functional data. J. Amer. Statist. Assoc. 109 661-673. · Zbl 1367.62151
[23] Zhou, L. and Pan, H. (2014). Principal component analysis of two-dimensional functional data. J. Comput. Graph. Statist. 23, 779-801.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.