×

Target circumnavigation of mobile robots using range-only measurements. (English) Zbl 1539.93132

Summary: This paper presents a control scheme to steer a nonholonomic robot to enclose an unknown target in both obstacle-free and obstacle-presence environments. Unlike most literature, we consider the situation where the robot with unknown position and orientation obtains only the distance to the target and detects collisions with obstacles. We first select a virtual point and construct new states to facilitate the controller design. For the obstacle-free case, a dynamic output feedback controller is derived to ensure that the distance between the robot and the target globally converges to a desired constant. The smooth bounded controller is computationally efficient and can be easily implemented. For the obstacle-presence case, a collision-allowed control strategy is developed to guarantee that the robot escapes from circular obstacles and eventually maintains a given distance from the target. Numerical simulations and practical experiments are performed to verify the effectiveness of the control method.

MSC:

93C85 Automated systems (robots, etc.) in control theory
70F25 Nonholonomic systems related to the dynamics of a system of particles
Full Text: DOI

References:

[1] Bacciotti, A.; Mazzi, L., An invariance principle for nonlinear switched systems, Systems & Control Letters, 54, 11, 1109-1119, (2005) · Zbl 1129.93443
[2] Berghuis, H.; Nijmeijer, H., Global regulation of robots using only position measurements, Systems & Control Letters, 21, 4, 289-293, (1993) · Zbl 0800.93935
[3] Briod, A.; Kornatowski, P.; Zufferey, J.-C.; Floreano, D., A collision-resilient flying robot, Journal of Field Robotics, 31, 4, 496-509, (2014)
[4] Cao, Y., UAV circumnavigating an unknown target under a GPS-denied environment with range-only measurements, Automatica, 55, 150-158, (2015) · Zbl 1377.93109
[5] Ceccarelli, N.; Di Marco, M.; Garulli, A.; Giannitrapani, A., Collective circular motion of multi-vehicle systems, Automatica, 44, 12, 3025-3035, (2008) · Zbl 1153.93455
[6] Chun, S.; Tian, Y.-P., Multi-targets localization and elliptical circumnavigation by multi-agents using bearing-only measurements in two-dimensional space, International Journal of Robust and Nonlinear Control, 30, 8, 3250-3268, (2020) · Zbl 1466.93013
[7] Deghat, M.; Davis, E.; See, T.; Shames, I.; Anderson, B. D.O.; Yu, C., Target localization and circumnavigation by a non-holonomic robot, (2012 IEEE/RSJ international conference on intelligent robots and systems, (2012)), 1227-1232
[8] Deghat, M.; Shames, I.; Anderson, B. D.O.; Yu, C., Localization and circumnavigation of a slowly moving target using bearing measurements, IEEE Transactions on Automatic Control, 59, 8, 2182-2188, (2014) · Zbl 1360.93344
[9] Dong, F.; You, K.; Song, S., Target encirclement with any smooth pattern using range-based measurements, Automatica, 116, Article 108932 pp., (2020) · Zbl 1440.93162
[10] Dong, F.; You, K.; Xie, L.; Hu, Q., Coordinate-free circumnavigation of a moving target via a PD-like controller, IEEE Transactions on Aerospace and Electronic Systems, 58, 3, 2012-2025, (2022)
[11] Dou, L.; Song, C.; Wang, X.; Liu, L.; Feng, G., Target localization and enclosing control for networked mobile agents with bearing measurements, Automatica, 118, Article 109022 pp., (2020) · Zbl 1447.93001
[12] El-Hawwary, M. I.; Maggiore, M., Global path following for the unicycle and other results, (2008 American control conference, (2008)), 3500-3505
[13] El-Hawwary, M. I.; Maggiore, M., Distributed circular formation stabilization for dynamic unicycles, IEEE Transactions on Automatic Control, 58, 1, 149-162, (2013) · Zbl 1369.93022
[14] Fidan, B.; Dasgupta, S.; Anderson, B. D., Adaptive range-measurement-based target pursuit, International Journal of Adaptive Control and Signal Processing, 27, 1-2, 66-81, (2013) · Zbl 1273.93093
[15] Ghommam, J.; Fethalla, N.; Saad, M., Quadrotor circumnavigation of an unknown moving target using camera vision-based measurements, IET Control Theory & Applications, 10, 15, 1874-1887, (2016)
[16] Hu, B.; Zhang, H.-T., Bearing-only motional target-surrounding control for multiple unmanned surface vessels, IEEE Transactions on Industrial Electronics, 69, 4, 3988-3997, (2022)
[17] Khalil, H. K., Nonlinear systems, (2002), Prentice Hall: Prentice Hall Upper Saddle River, New Jersey, USA · Zbl 1003.34002
[18] Kim, T.-H.; Sugie, T., Cooperative control for target-capturing task based on a cyclic pursuit strategy, Automatica, 43, 8, 1426-1431, (2007) · Zbl 1130.93387
[19] Li, X.; Liu, X.; Wang, G.; Han, S.; Shi, C.; Che, H., Cooperative target enclosing and tracking control with obstacles avoidance for multiple nonholonomic mobile robots, Applied Sciences, 12, 6, 2876, (2022)
[20] Lu, Z.; Liu, Z.; Campbell, M.; Karydis, K., Online search-based collision-inclusive motion planning and control for impact-resilient mobile robots, IEEE Transactions on Robotics, 39, 2, 1029-1049, (2023)
[21] Matveev, A. S.; Semakova, A. A.; Savkin, A. V., Range-only based circumnavigation of a group of moving targets by a non-holonomic mobile robot, Automatica, 65, 76-89, (2016) · Zbl 1328.93174
[22] Matveev, A. S.; Semakova, A. A.; Savkin, A. V., Tight circumnavigation of multiple moving targets based on a new method of tracking environmental boundaries, Automatica, 79, 52-60, (2017) · Zbl 1371.93136
[23] Matveev, A. S.; Teimoori, H.; Savkin, A. V., Range-only measurements based target following for wheeled mobile robots, Automatica, 47, 1, 177-184, (2011) · Zbl 1209.93100
[24] Miao, Z.; Wang, Y.; Fierro, R., Cooperative circumnavigation of a moving target with multiple nonholonomic robots using backstepping design, Systems & Control Letters, 103, 58-65, (2017) · Zbl 1370.93022
[25] Milutinović, D.; Casbeer, D.; Cao, Y.; Kingston, D., Coordinate frame free dubins vehicle circumnavigation using only range-based measurements, International Journal of Robust and Nonlinear Control, 27, 16, 2937-2960, (2017) · Zbl 1386.93078
[26] Moreno, J. A.; Osorio, M., Strict Lyapunov functions for the super-twisting algorithm, IEEE Transactions on Automatic Control, 57, 4, 1035-1040, (2012) · Zbl 1369.93568
[27] Nelson, D. R.; Barber, D. B.; McLain, T. W.; Beard, R. W., Vector field path following for miniature air vehicles, IEEE Transactions on Robotics, 23, 3, 519-529, (2007)
[28] Peng, Z.; Jiang, Y.; Wang, J., Event-triggered dynamic surface control of an underactuated autonomous surface vehicle for target enclosing, IEEE Transactions on Industrial Electronics, 68, 4, 3402-3412, (2021)
[29] Shames, I.; Dasgupta, S.; Fidan, B.; Anderson, B. D.O., Circumnavigation using distance measurements under slow drift, IEEE Transactions on Automatic Control, 57, 4, 889-903, (2012) · Zbl 1369.93423
[30] Shi, L.; Zheng, R.; Liu, M.; Zhang, S., Distributed circumnavigation control of autonomous underwater vehicles based on local information, Systems & Control Letters, 148, Article 104873 pp., (2021) · Zbl 1478.93456
[31] Teimoori, H.; Savkin, A. V., A method for collision-free navigation of a wheeled mobile robot using the range-only information, (2008 American control conference, (2008)), 1418-1423
[32] Teimoori, H., & Savkin, A. V. (2009). Distance-only based navigation of Wheeled Mobile Robots with obstacle avoidance. In 2008 IEEE International conference on robotics and biomimetics (pp. 1956-1961).
[33] Wang, J.; Ma, B.; Yan, K., Mobile robot circumnavigating an unknown target using only range rate measurement, IEEE Transactions on Circuits and Systems II: Express Briefs, 69, 2, 509-513, (2022)
[34] Wang, L.; Zou, Y.; Meng, Z., Stationary target localization and circumnavigation by a non-holonomic differentially driven mobile robot: Algorithms and experiments, International Journal of Robust and Nonlinear Control, 31, 6, 2061-2081, (2021)
[35] Wilhelm, J.; Clem, G.; Casbeer, D.; Gerlach, A., Circumnavigation and obstacle avoidance guidance for UAVs using gradient vector fields, (AIAA scitech 2019 forum, (2019)), 1791
[36] Yang, Z.; Zhu, S.; Chen, C.; Feng, G.; Guan, X., Entrapping a target in an arbitrarily shaped orbit by a single robot using bearing measurements, Automatica, 113, Article 108805 pp., (2020) · Zbl 1440.93177
[37] Yu, Y.; Li, Z.; Wang, X.; Shen, L., Bearing-only circumnavigation control of the multi-agent system around a moving target, IET Control Theory & Applications, 13, 17, 2747-2757, (2019)
[38] Zhang, M.; Lin, Y.; Hao, H.; Mei, J., Range-only control for cooperative target circumnavigation of unmanned aerial vehicles, Advanced Control for Applications, 2, 4, Article e51 pp., (2020)
[39] Zhang, M.; Tian, P.; Chen, X., Unmanned aerial vehicle guidance law for ground target circumnavigation using range-based measurements, International Journal of Control, Automation and Systems, 15, 5, 2455-2460, (2017)
[40] Zheng, R.; Lin, Z.; Fu, M.; Sun, D., Distributed control for uniform circumnavigation of ring-coupled unicycles, Automatica, 53, 23-29, (2015) · Zbl 1371.93026
[41] Zheng, R.; Liu, Y.; Sun, D., Enclosing a target by nonholonomic mobile robots with bearing-only measurements, Automatica, 53, 400-407, (2015) · Zbl 1371.93142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.