×

Reconstruction of random fields concentrated on an unknown curve using irregularly sampled data. (English) Zbl 1539.62291

Summary: In the world of connected automated objects, increasingly rich and structured data are collected daily (positions, environmental variables, etc.). In this work, we are interested in the characterization of the variability of the trajectories of one of these objects (robot, drone, or delivery droid for example) along a particular path from irregularly sampled data in time and space. To do so, we model the position of the considered object by a random field indexed in time, whose distribution we try to estimate (for risk analysis for example). This distribution being by construction concentrated on an unknown curve, two phases are proposed for its reconstruction: a phase of identification of this curve, by clustering and polynomial smoothing techniques, then a phase of statistical inference of the random field orthogonal to this curve, by spectral methods and kernel reconstructions. The efficiency of the proposed approach, both in terms of computation time and reconstruction quality, is illustrated on several numerical applications.

MSC:

62M40 Random fields; image analysis
60G60 Random fields
62G07 Density estimation
62M30 Inference from spatial processes
62R30 Statistics on manifolds

Software:

KernSmooth; t-SNE
Full Text: DOI

References:

[1] Aldenderfer MS, Blashfield RK (1984) Cluster analysis. SAGE Publications, Inc
[2] Donoho, DL; Grimes, C., Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data, Proc Natl Acad Sci, 100, 10, 5591-5596, 2003 · Zbl 1130.62337 · doi:10.1073/pnas.1031596100
[3] Duong, T.; Cowling, A.; Koch, I.; Wand, MP, Feature significance for multivariate kernel density estimation, Comput Stat Data Anal, 52, 9, 4225-4242, 2008 · Zbl 1452.62265 · doi:10.1016/j.csda.2008.02.035
[4] Ghanem, R.; Spanos, PD, Polynomial Chaos in Stochastic Finite Elements, J Appl Mech, 57, 1, 197-202, 1990 · Zbl 0729.73290 · doi:10.1115/1.2888303
[5] Ghanem, R.; Spanos, PD, Stochastic finite elements: a spectral approach, 2003, New York: Dover Publications, New York
[6] Haberstich C, Nouy A, Perrin G (2022) Boosted optimal weighted least-squares. Math Comput
[7] Hastie, T.; Tibshirani, R.; Friedman, J., The elements of statistical learning, 2001, New York, NY, USA: Springer Series in Statistics. Springer, New York, NY, USA · Zbl 0973.62007 · doi:10.1007/978-0-387-21606-5
[8] Le Maître, O.; Knio, OM, Spectral methods for uncertainty quantification, 2010, Dordrecht: Springer, Dordrecht · Zbl 1193.76003 · doi:10.1007/978-90-481-3520-2
[9] Maday, Y.; Nguyen, NC; Patera, AT; Pau, SH, A general multipurpose interpolation procedure: the magic points, Commun Pure Appl Anal, 8, 1, 383-404, 2009 · Zbl 1184.65020 · doi:10.3934/cpaa.2009.8.383
[10] Mak, S.; Joseph, VR, Support points, Ann Stat, 46, 2562-2592, 2018 · Zbl 1408.62030 · doi:10.1214/17-AOS1629
[11] Nürnberger, G., Approximation by spline functions, 1989, Heidelberg: Springer, Heidelberg · Zbl 0692.41017 · doi:10.1007/978-3-642-61342-5
[12] Perrin, G.; Soize, C.; Duhamel, D.; Funfschilling, C., Identification of polynomial chaos representations in high dimension from a set of realizations, SIAM J Sci Comput, 34, 6, 2917-2945, 2012 · Zbl 1262.60067 · doi:10.1137/11084950X
[13] Perrin, G.; Soize, C.; Ouhbi, N., Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints, J Comput Stat Data Anal, 119, 139-154, 2018 · Zbl 1469.62129 · doi:10.1016/j.csda.2017.10.005
[14] Rokach L, Maimon O (2005). In: Maimon O, Rokach L (eds) Clustering Methods. Springer, Boston, pp 321-352
[15] Santner, TJ; Williams, BJ; Notz, WI, The design and analysis of computer experiments, 2003, New York: Springer, New York · Zbl 1041.62068 · doi:10.1007/978-1-4757-3799-8
[16] Scott, DW; Sain, SR; Rao, CR; Wegman, EJ; Solka, JL, Multidimensional density estimation, Data Mining and Data Visualization, 229-261, 2005, Amsterdam: Elsevier, Amsterdam · doi:10.1016/S0169-7161(04)24009-3
[17] Shorack, GR; Wellner, JA, Empirical processes with applications to statistics, 2009, Philadelphia: Society for Industrial and Applied Mathematics, Boston, MA, Philadelphia · Zbl 1171.62057 · doi:10.1137/1.9780898719017
[18] Silverman BW (1986) Density estimation for statistics and data analysis. In: Monographs on Statistics and Applied Probability, vol. 37, p 120 · Zbl 0617.62042
[19] Soize, C., Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data, Comput Methods Appl Mech Eng, 199, 33-36, 2150-2164, 2010 · Zbl 1231.74501 · doi:10.1016/j.cma.2010.03.013
[20] Soize, C., Uncertainty quantification, Interdisciplinary applied mathematics, 1-327, 2017, Cham: Springer, Cham · Zbl 1377.60002
[21] Soize, C.; Ghanem, R., Probabilistic learning on manifolds (PLoM) with partition, Int J Numer Meth Eng, 123, 1, 268-290, 2022 · Zbl 07757774 · doi:10.1002/nme.6856
[22] Teymur O, Gorham J, Riabiz M, Oates CJ (2021) Optimal quantisation of probability measures using maximum mean discrepancy. Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS) 130
[23] van der Maaten, L.; Hinton, G., Visualizing data using t-sne, J Mach Learn Res, 9, 86, 2579-2605, 2008 · Zbl 1225.68219
[24] Wand, MP; Jones, MC, Kernel smoothing, Encycl Stat Behav Sci, 60, 60, 212, 1995 · Zbl 0854.62043
[25] Wu, J., Cluster analysis and K-means clustering: an introduction, 1-16, 2012, Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1267.68018 · doi:10.1007/978-3-642-29807-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.