×

A necessary and sufficient condition for a direct sum of modules to be distributive. (English) Zbl 1539.13026

Fix a ring \(R\) and call the left \(R\)-modules simply modules. Call (as usual) a module \(M\) distributive if \(S \cap (T + U) = S \cap T + S \cap U\) for all submodules \(S\), \(T\) and \(U\) of \(M\). The aim of the paper is to prove the following two theorems. Theorem A: A direct sum of modules \(\oplus_{i\in I} M_i\) is distributive iff \((1)\) every term \(M_i\) is distributive and \((2)\) every submodule \(S\) of \(\oplus_{i\in I} M_i\) splits with respect to \(\bigoplus_{i\in I} M_i\) (that is, \(S=\oplus_{i\in I} S_i\) for some submodules \(S_i\) of \(M_i\)). As usual, a simple subquotient of a module \(M\) is a simple module of the form \(S/T\) where \(T\subseteq S\) are submodules of \(M\). The authors call two modules \(M\) and \(N\) orthogonal if no simple subquotient of \(M\) is isomorphic to a simple subquotient of \(N\). Theorem B states that condition \((2)\) of Theorem A holds iff \(M_i\) is orthogonal to \(M_j\) for all distinct \(i,j\in I\).

MSC:

13C05 Structure, classification theorems for modules and ideals in commutative rings
13C13 Other special types of modules and ideals in commutative rings
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations
13C99 Theory of modules and ideals in commutative rings
Full Text: DOI

References:

[1] Alsuraiheed, T., Bavula, V. V. (2021). Criteria for a direct sum of modules to be a multiplication module over noncommutative rings. J. Algebra584:69-88. DOI: . · Zbl 1482.16005
[2] Barnard, A. D. (1981). Distributive extensions of modules. J. Algebra70(2):303-315. DOI: . · Zbl 0468.13012
[3] Camillo, V. (1975). Distributive modules. J. Algebra36(1):16-25. DOI: . · Zbl 0308.16015
[4] Dauns, J., Zhou, Y. (2006). Classes of Modules. Pure and Applied Mathematics (Boca Raton), Vol. 281. Boca Raton, FL: Chapman & Hall/CRC. · Zbl 1108.16001
[5] Dung, N. V., Facchini, A. (1997). Weak Krull-Schmidt for infinite direct sums of uniserial modules. J. Algebra193(1):102-121. DOI: . · Zbl 0885.16008
[6] Dung, N. V., Facchini, A. (1998). Direct summands of serial modules, Ring theory (Miskolc, 1996). J. Pure Appl. Algebra133(1-2):93-106. DOI: . · Zbl 0936.16005
[7] Erdoǧdu, V. (1987). Distributive modules. Can. Math. Bull. 30(2):248-254. · Zbl 0591.13007
[8] Erdoǧdu, V. (1988). Multiplication modules which are distributive. J. Pure Appl. Algebra54(2-3):209-213. · Zbl 0658.13006
[9] Gilmer, R. (1972). Multiplicative Ideal Theory. Pure and Applied Mathematics, No. 12. New York: Marcel Dekker, Inc. · Zbl 0248.13001
[10] Jensen, C. U. (1966). Arithmetical rings. Acta Math. Acad. Sci. Hungar. 17:115-123. DOI: . · Zbl 0141.03502
[11] Stephenson, W. (1969). Lattice isomorphisms between modules, I. Endomorphism rings. J. London Math. Soc. (2)1:177-183. DOI: . · Zbl 0212.38007
[12] Stephenson, W. (1974). Modules whose lattice of submodules is distributive. Proc. London Math. Soc. (3)28:291-310. DOI: . · Zbl 0294.16003
[13] Vámos, P. (1978). Finitely generated Artinian and distributive modules are cyclic. Bull. London Math. Soc. 10(3):287-288. DOI: . · Zbl 0398.16006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.