×

Totaro’s question for adjoint groups of types \(A_1\) and \(A_{2n}\). (English) Zbl 1539.11066

Let \(G\) be a smooth connected linear algebraic group over a field \(k\) and let \(X\) be a \(G\)-torsor. Let \(d\) be the index of \(X\) as a \(k\)-variety, i.e., the greatest common divisor of the degrees \([L:k]\), where \(L\) runs through finite field extensions such that \(X\) has an \(L\)-point. A question of B. Totaro [Duke Math. J. 121, No. 3, 425–455 (2004; Zbl 1048.11031)] asks whether there exists a finite separable field extension \(F/k\) of degree \(d\) such that \(X\) has an \(F\)-point.
The paper under review proves that Totaro’s question has an affirmative answer if the field \(k\) has characteristic \(\neq 2\) and if \(G\) is an absolutely simple adjoint group of type \(A_1\) or \(A_{2n}\). In terms of algebras with involution, the main theorem of the paper implies the following: Let \(K/k\) be a quadratic separable extension and let \((A,\,\sigma)\) and \((B,\,\tau)\) be central simple \(K\)-algebras with \(K/k\)-involution. If there are finite field extensions \(L_1/k,\cdots, L_m/k\) with \(\gcd\{[L_i:k]\}=d\) such that \((A,\,\sigma)_{L_i}\cong (B,\,\tau)_{L_i}\) for each \(i=1,\cdots, m\), then there exists a separable field extension \(F/k\) with \([F:k]\,|\,d\) such that \((A,\,\sigma)_F\cong (B,\,\tau)_F\).
Note that Totaro’s question in general has a negative answer, as shown in [R. Gordon-Sarney and V. Suresh, Duke Math. J. 167, No. 2, 385–395 (2018; Zbl 1383.14003)].

MSC:

11E72 Galois cohomology of linear algebraic groups
11E39 Bilinear and Hermitian forms
Full Text: DOI

References:

[1] Albert, A. Adrian, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. XXIV, xi+210 pp. (1961), American Mathematical Society, Providence, RI
[2] Bayer-Fluckiger, E., Forms in odd degree extensions and self-dual normal bases, Amer. J. Math., 359-373 (1990) · Zbl 0729.12006 · doi:10.2307/2374746
[3] Bhaskhar, Nivedita, On Serre’s injectivity question and norm principle, Comment. Math. Helv., 145-161 (2016) · Zbl 1342.14098 · doi:10.4171/CMH/381
[4] Black, Jodi, Implications of the Hasse principle for zero cycles of degree one on principal homogeneous spaces, Proc. Amer. Math. Soc., 4163-4171 (2011) · Zbl 1257.11038 · doi:10.1090/S0002-9939-2011-10844-X
[5] Black, Jodi, Zero cycles of degree one on principal homogeneous spaces, J. Algebra, 232-246 (2011) · Zbl 1271.11046 · doi:10.1016/j.jalgebra.2010.12.027
[6] Black, Jodi, Totaro’s question for simply connected groups of low rank, Pacific J. Math., 257-267 (2014) · Zbl 1302.11015 · doi:10.2140/pjm.2014.269.257
[7] Garibaldi, Skip, Totaro’s question on zero-cycles on \(G_2, F_4\) and \(E_6\) torsors, J. London Math. Soc. (2), 325-338 (2006) · Zbl 1092.11021 · doi:10.1112/S0024610705022489
[8] Gille, Philippe, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, xii+343 pp. (2006), Cambridge University Press, Cambridge · Zbl 1137.12001 · doi:10.1017/CBO9780511607219
[9] Gordon-Sarney, Reed Leon, Totaro’s question for tori of low rank, Trans. Amer. Math. Soc., 3245-3264 (2018) · Zbl 1388.14024 · doi:10.1090/tran/7052
[10] Gordon-Sarney, R., Totaro’s question on zero-cycles on torsors, Duke Math. J., 385-395 (2018) · Zbl 1383.14003 · doi:10.1215/00127094-2017-0040
[11] Gordon-Sarney, R., Erratum for “Totaro”s question on zero-cycles on torsors”, Duke Math. J., 2631-2632 (2021) · Zbl 1472.14009 · doi:10.1215/00127094-2021-0032
[12] Jacobson, Nathan, Finite-dimensional division algebras over fields, viii+278 pp. (1996), Springer-Verlag, Berlin · Zbl 0874.16002 · doi:10.1007/978-3-642-02429-0
[13] Knus, Max-Albert, The book of involutions, American Mathematical Society Colloquium Publications, xxii+593 pp. (1998), American Mathematical Society, Providence, RI · Zbl 0955.16001 · doi:10.1090/coll/044
[14] Parimala, R., Homogeneous varieties-zero-cycles of degree one versus rational points, Asian J. Math., 251-256 (2005) · Zbl 1095.14018 · doi:10.4310/AJM.2005.v9.n2.a9
[15] Scharlau, Winfried, Zur Existenz von Involutionen auf einfachen Algebren, Math. Z., 29-32 (1975) · doi:10.1007/BF01214495
[16] Scharlau, Winfried, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], x+421 pp. (1985), Springer-Verlag, Berlin · Zbl 0584.10010 · doi:10.1007/978-3-642-69971-9
[17] Serre, Jean-Pierre, Cohomologie galoisienne: progr\`es et probl\`emes, Ast\'{e}risque, Exp. No. 783, 4, 229-257 (1995) · Zbl 0837.12003
[18] Totaro, Burt, Splitting fields for \(E_8\)-torsors, Duke Math. J., 425-455 (2004) · Zbl 1048.11031 · doi:10.1215/S0012-7094-04-12132-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.