×

Equilibrium spacetime correlations of the Toda lattice on the hydrodynamic scale. (English) Zbl 1538.82099

Summary: We report on molecular dynamics simulations of spacetime correlations of the Toda lattice in thermal equilibrium. The correlations of stretch, momentum, and energy are computed numerically over a wide range of pressure and temperature. Our numerical results are compared with the predictions from linearized generalized hydrodynamics on the Euler scale. The system size is \(N=3000,\, 4000\) and time \(t =600\), at which ballistic scaling is well confirmed. With no adjustable parameters, the numerically obtained scaling functions agree with the theory within a precision of less than 3.5%.

MSC:

82M37 Computational molecular dynamics in statistical mechanics
82B23 Exactly solvable models; Bethe ansatz
82B30 Statistical thermodynamics
81V55 Molecular physics
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K60 Lattice dynamics; integrable lattice equations
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics

References:

[1] Allez, R.; Bouchaud, J.; Guionnet, A., Invariant \(\beta\) ensembles and the Gauss-Wigner crossover, Phys. Rev. Lett., 109, 1-5 (2012) · doi:10.1103/PhysRevLett.109.094102
[2] Bastianello, A.; Doyon, B.; Watts, G.; Yoshimura, T., Generalized hydrodynamics of classical integrable field theory: the Sinh-Gordon model, SciPost Phys. (2018) · doi:10.21468/SciPostPhys.4.6.045
[3] Beijeren, H., Exact results for anomalous transport in one-dimensional Hamiltonian systems, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.180601
[4] Bertini, B.; Collura, M.; De Nardis, J.; Fagotti, M., Transport in out-of-equilibrium XXZ chains: exact profiles of charges and currents, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.207201
[5] Bulchandani, V.; Vasseur, R.; Karrasch, C.; Moore, J., Solvable hydrodynamics of quantum integrable systems, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.220604
[6] Bulchandani, V.; Cao, X.; Moore, J., Kinetic theory of quantum and classical Toda lattices, J. Phys. A: Math. Theor., 52, 33LT01 (2019) · Zbl 1509.82056 · doi:10.1088/1751-8121/ab2cf0
[7] Castro-Alvaredo, O.; Doyon, B.; Yoshimura, T., Emergent hydrodynamics in integrable quantum systems out of equilibrium, Phys. Rev. X, 6 (2016)
[8] Das, A.; Kulkarni, M.; Spohn, H.; Dhar, A., Kardar-Parisi-Zhang scaling for an integrable lattice Landau-Lifshitz spin chain, Phys. Rev. E (2019) · doi:10.1103/PhysRevE.100.042116
[9] Doyon, B., Exact large-scale correlations in integrable systems out of equilibrium, SciPost Phys. (2018) · doi:10.21468/SciPostPhys.5.5.054
[10] Doyon, B., Generalized hydrodynamics of the classical Toda system, J. Math. Phys., 60 (2019) · Zbl 1427.82005 · doi:10.1063/1.5096892
[11] Doyon, B., Hydrodynamic projections and the emergence of linearised Euler equations in one-dimensional isolated systems, Comm. Math. Phys., 391, 293-356 (2022) · Zbl 1489.82054 · doi:10.1007/s00220-022-04310-3
[12] Doyon, B.; Spohn, H., Drude weight for the Lieb-Liniger Bose gas, SciPost Phys., 3, 039 (2017) · doi:10.21468/SciPostPhys.3.6.039
[13] Dupont, M.; Moore, J., Universal spin dynamics in infinite-temperature one-dimensional quantum magnets, Phys. Rev. B, 101 (2020) · doi:10.1103/PhysRevB.101.121106
[14] Fermi, E., Pasta, J. & Ulam, S. Studies of nonlinear problems. (Los Alamos National Laboratory,1955) · Zbl 0353.70028
[15] Flaschka, H., The Toda lattice. I. Existence of integrals, Phys. Rev. B, 3, 9, 1924-1925 (1974) · Zbl 0942.37504 · doi:10.1103/PhysRevB.9.1924
[16] Forrester, P.; Mazzuca, G., The classical \(\beta \)-ensembles with \(\beta\) proportional to 1/N: from loop equations to Dyson’s disordered chain, J. Math. Phys., 62 (2021) · Zbl 1469.60031 · doi:10.1063/5.0048481
[17] Forster, D. Hydrodynamic fluctuations, broken symmetry, and correlation functions (1975). https://inis.iaea.org/search/search.aspx?orig
[18] Gallavotti, G.; Miracle-Sole, S., Absence of phase transitions in hard-core one-dimensional systems with long-range interactions, J. Math. Phys., 11, 147-154 (1970) · doi:10.1063/1.1665040
[19] Grava, T.; Mazzuca, G., Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, circular \(\beta \)-ensemble and double confluent Heun equation, Comm. Math. Phys., 399, 1689-1729 (2023) · Zbl 1521.37088 · doi:10.1007/s00220-023-04642-8
[20] Grava, T.; Maspero, A.; Mazzuca, G.; Ponno, A., Adiabatic invariants for the FPUT and Toda chain in the thermodynamic limit, Comm. Math. Phys., 380, 811-851 (2020) · Zbl 1462.37082 · doi:10.1007/s00220-020-03866-2
[21] Grava, T.; Kriecherbauer, T.; Mazzuca, G.; McLaughlin, K., Correlation functions for a chain of short range oscillators, J. Stat. Phys., 183, 1 (2021) · Zbl 1473.82018 · doi:10.1007/s10955-021-02735-z
[22] Grava, T.; Kriecherbauer, T.; Mazzuca, G.; McLaughlin, K., Correlation functions for a chain of short range oscillators, J. Stat. Phys., 183, 1-31 (2021) · Zbl 1473.82018 · doi:10.1007/s10955-021-02735-z
[23] Guionnet, A.; Memin, R., Large deviations for Gibbs ensembles of the classical Toda chain, Electron. J. Probab., 27, 1-29 (2022) · Zbl 1487.60013 · doi:10.1214/22-EJP771
[24] Hairer, E.; Hairer, E.; Wanner, G.; Lubich, C., Symplectic Integration of Hamiltonian Systems, Geometric Numerical Integration: Structure-Preserving Algorithms For Ordinary Differential Equations, 179-236 (2006), Berlin: Springer, Berlin · Zbl 1094.65125 · doi:10.1007/3-540-30666-8_6
[25] Harris, C.; Millman, K.; Walt, S.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.; Kern, R.; Picus, M.; Hoyer, S.; Kerkwijk, M.; Brett, M.; Haldane, A.; Río, J.; Wiebe, M.; Peterson, P.; Gérard-Marchant, P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; Oliphant, T., Array programming with NumPy, Nature, 585, 357-362 (2020) · doi:10.1038/s41586-020-2649-2
[26] Hunter, J., Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 9, 90-95 (2007) · doi:10.1109/MCSE.2007.55
[27] Ilievski, E.; Nardis, J.; Medenjak, M.; Prosen, T., Superdiffusion in one-dimensional quantum lattice models, Phys. Rev. Lett. (2018) · doi:10.1103/PhysRevLett.121.230602
[28] Kardar, M.; Parisi, G.; Zhang, Y., Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 889-892 (1986) · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[29] Kundu, A.: Integrable hydrodynamics of Toda chain: case of small systems. Euro. Phys. J. Special Topics 24, 1-10 (2022). doi:10.1140/epjs/s11734-023-00848-y
[30] Kundu, A.; Dhar, A., Equilibrium dynamical correlations in the Toda chain and other integrable models, Phys. Rev. E, 94 (2016) · doi:10.1103/PhysRevE.94.062130
[31] Lam, S., Pitrou, A. & Seibert, S. Numba: A LLVM-based Python JIT compiler. Proceedings Of The Second Workshop On The LLVM Compiler Infrastructure In HPC. (2015)
[32] Landau, L.; Lifshitz, E., Fluid mechanics (2013), Amsterdam: Elsevier, Amsterdam
[33] Lebowitz, J.; Percus, J.; Sykes, J., Time evolution of the total distribution function of a one-dimensional system of hard rods, Phys. Rev., 171, 224-235 (1968) · doi:10.1103/PhysRev.171.224
[34] Ljubotina, M.; Ž nidarič, M.; Prosen, T., Kardar-Parisi-Zhang physics in the quantum Heisenberg magnet, Phys. Rev. Lett. (2019) · doi:10.1103/PhysRevLett.122.210602
[35] Manakov, S., Complete integrability and stochastization of discrete dynamical systems, Ž. Èksper. Teoret. Fiz., 67, 543-555 (1974)
[36] Mazzuca, G. & Memin, R. CLT for \(\beta\) ensembles at high-temperature, and for integrable systems: a transfer operator approach (2023). arXiv:2304.10323 · Zbl 1522.37010
[37] Mazzuca, G. Toda correlation functions (GitHub, 2022). https://github.com/gmazzuca/TodaCorrelation. doi:10.1140/epjs/s11734-023-00848-y
[38] Mazzuca, G., On the mean density of states of some matrices related to the beta ensembles and an application to the Toda lattice, J. Math. Phys., 63 (2022) · Zbl 1507.60016 · doi:10.1063/5.0076539
[39] Mazzuca, G., On the mean density of states of some matrices related to the beta ensembles and an application to the Toda lattice, J. Math. Phys., 63 (2022) · Zbl 1507.60016 · doi:10.1063/5.0076539
[40] Mazzuca, G.; Memin, R., Large deviations for Ablowitz-Ladik lattice, and the Schur flow, Electron. J. Probab. (2023) · Zbl 1522.37010 · doi:10.1214/23-ejp941
[41] Mendl, C.; Spohn, H., Equilibrium time-correlation functions for one-dimensional hard-point systems, Phys. Rev. E, 90 (2014) · doi:10.1103/PhysRevE.90.012147
[42] Mendl, C.; Spohn, H., Low temperature dynamics of the one-dimensional discrete nonlinear Schrödinger equation, J. Stat. Mech.: Theory Exp., 2015, P08028 (2015) · Zbl 1456.82870 · doi:10.1088/1742-5468/2015/08/P08028
[43] Mendl, C.; Spohn, H., High-low pressure domain wall for the classical Toda lattice, SciPost Phys. Core., 5, 002 (2022) · doi:10.21468/SciPostPhysCore.5.1.002
[44] Møller, F.; Perfetto, G.; Doyon, B.; Schmiedmayer, J., Euler-scale dynamical correlations in integrable systems with fluid motion, SciPost Phys. Core (2020) · doi:10.21468/SciPostPhysCore.3.2.016
[45] Opper, M., Analytical solution of the classical Bethe ansatz equation for the Toda chain, Phys. Lett. A, 112, 201-203 (1985) · doi:10.1016/0375-9601(85)90502-X
[46] Schneider, T.; Benedek, G.; Bilz, H.; Zeyher, R., Classical statistical mechanics of lattice dynamic model systems: transfer integral and molecular-dynamics studies, Statics And Dynamics Of Nonlinear Systems, 212-241 (1983), Berlin: Springer, Berlin · doi:10.1007/978-3-642-82135-6_21
[47] Schneider, T.; Stoll, E., Excitation spectrum of the Toda lattice: a molecular-dynamics study, Phys. Rev. Lett., 45, 997-1002 (1980) · doi:10.1103/PhysRevLett.45.997
[48] Spohn, H. Hydrodynamic scales of integrable many-particle systems (2023). arXiv:2301.08504
[49] Spohn, H. The Kardar-Parisi-Zhang equation: a statistical physics perspective. Stochastic processes and random matrices: lecture notes of the Les Houches Summer School July 2015. 104 pp. 177-227 (2017) · Zbl 1403.35295
[50] Spohn, H., Nonlinear fluctuating hydrodynamics for anharmonic chains, J. Stat. Phys., 154, 1191-1227 (2014) · Zbl 1291.82119 · doi:10.1007/s10955-014-0933-y
[51] Spohn, H., Ballistic space-time correlators of the classical Toda lattice, J. Phys. A, 53, 265004-2650017 (2020) · Zbl 1519.37063 · doi:10.1088/1751-8121/ab91d5
[52] Spohn, H., Generalized Gibbs ensembles of the classical Toda chain, J. Stat. Phys., 180, 4-22 (2020) · Zbl 1461.76011 · doi:10.1007/s10955-019-02320-5
[53] Spohn, H., Collision rate ansatz for the classical Toda lattice, Phys. Rev. E, 101, 060103(R) (2020) · doi:10.1103/PhysRevE.101.060103
[54] Toda, M., Vibration of a chain with nonlinear interaction, J. Phys. Soc. Jpn., 22, 431-436 (1967) · doi:10.1143/JPSJ.22.431
[55] Toda, M.: Theory of Nonlinear Lattices. Springer, Berlin (1989). doi:10.1007/978-3-642-83219-2 · Zbl 0694.70001
[56] Yoshimura, T.; Spohn, H., Collision rate ansatz for quantum integrable systems, SciPost Phys., 9, 040 (2020) · doi:10.21468/SciPostPhys.9.3.040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.