×

Temporal electron-spin splitter based on a novel semiconductor magnetic quantum microstructure with zero average magnetic fields. (English) Zbl 1538.82063

Summary: The dwell time is calculated for electron in a novel magnetic nanostructure with zero average magnetic fields, which is realized experimentally by constructing three nanosized ferromagnetic stripes on top and bottom of the InAs/\(\mathrm{Al_x In_{1-x}As}\) heterostructure. Although structural magnetic fields are averagely equal to naught, the dwell time is still dependent on electron spins owing to the spin-field interaction. Due to the dependence of effective potential experienced by electron on structural parameters (such as magnetic strength and device width), spin-polarized dwell time can be conveniently modulated by reasonably fabricating ferromagnetic stripes. As a result, this novel magnetic microstructure can act as a temporal electron-spin splitter for spintronic device applications.

MSC:

82D37 Statistical mechanics of semiconductors
82D80 Statistical mechanics of nanostructures and nanoparticles
82D40 Statistical mechanics of magnetic materials
78A35 Motion of charged particles
Full Text: DOI

References:

[1] Žutíc, I.; Fabian, J.; Sarma, S. D., Rev. Mod. Phys., 76, 323 (2004)
[2] Linder, J.; Robinson, J. W.A., Nat. Phys., 11, 307 (2015)
[3] Liu, C.; Chen, H.; Wang, S.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P., Nat. Nanotechnol., 15, 545 (2020)
[4] Gong, C.; Zhang, X., Science, 363, 705 (2019)
[5] Soumyanrayanan, A.; Reyren, N.; Fert, A.; Panagopoulos, C., Nature, 539, 509 (2016)
[6] Gurram, M.; Omar, S.; Wees, B. J.V., Nat. Commun., 8, 248 (2017)
[7] Kitchen, D.; Richardella, A.; Tang, J. M.; Flatté, M. E.; Yazdani, A., Nature, 442, 436 (2006)
[8] Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Carrére, H.; Zhao, F.; Balocchi, A.; Marie, X.; Tu, C. W.; Chen, W. M., Appl. Phys. Lett., 96, Article 052104 pp. (2010)
[9] Kong, Y. H.; Liu, X. H.; Li, A. H.; Gong, Y. J., Vacuum, 159, 410 (2019)
[10] Wang, L.; Guo, Y., Phys. Rev. B, 73, Article 205311 pp. (2006)
[11] Matulis, A.; Peeters, F. M.; Vasilopoulos, P., Phys. Rev. Lett., 72, 1518 (1994)
[12] Nogaret, A., J. Phys. Condens. Matter, 22, Article 253201 pp. (2010)
[13] Nogaret, A.; Bending, S. J.; Henini, M., Phys. Rev. Lett., 44, 2231 (2000)
[14] Liu, G.; Tang, G.; Tan, H., Phys. Lett. A, 443, Article 128224 pp. (2022) · Zbl 1498.81125
[15] Guo, Q. M.; Lu, M. W.; Huang, X. H.; Yang, S. Q.; Qin, Y. J., Vacuum, 186, Article 110059 pp. (2021)
[16] Chen, S. Y.; Zhang, G. L.; Cao, X. L.; Peng, F. F., J. Comput. Electron., 20, 785 (2021)
[17] Zhang, G. L.; Lu, M. W.; Chen, S. Y.; Peng, F. F.; Meng, J. S., IEEE Trans. Magn., 57, Article 1400305 pp. (2021)
[18] Chen, S. Y.; Lu, M. W.; Cao, X. L., Chin. Phys. B, 31, Article 017201 pp. (2022)
[19] Guo, Q. M.; Lu, M. W.; Yang, S. Q.; Qin, Y. J.; Xie, S. S., Braz. J. Phys., 52, 74 (2022)
[20] Zhai, F.; Xu, H. Q.; Guo, Y., Phys. Rev. B, 70, Article 085308 pp. (2004)
[21] Lu, M. W.; Chen, S. Y.; Cao, X. L.; Huang, X. H., IEEE Trans. Electron Devices, 68, 860 (2021)
[22] Soares, G. V.; Nakhaie, S.; Heilmann, M.; Riechert, H.; Lopes, J. M.J., Appl. Phys. Lett., 112, Article 163103 pp. (2018)
[23] Lu, M. W.; Chen, S. Y.; Cao, X. L.; Huang, X. H., Results Phys., 19, Article 103375 pp. (2020)
[24] Guo, Q. M.; Chen, S. Y.; Cao, X. L.; Yang, S. Q., Semicond. Sci. Technol., 36, Article 055013 pp. (2021)
[25] Guo, Q. M.; Lu, M. W.; Yang, S. Q.; Qin, Y. J.; Xie, S. S., J. Nanoelectron. Optoelectron., 16, 1554 (2021)
[26] Chen, S. Y.; Cao, X. L.; Huang, X. H.; Lu, M. W., Eur. Phys. J. Plus, 138, 111 (2023)
[27] Liu, X. H.; Zhang, G. L.; Kong, Y. H.; Li, A. H.; Fu, X., Appl. Surf. Sci., 313, 545 (2014)
[28] von Bergmann, K.; Heinze, S.; Bode, M.; Vedmedenko, E. Y.; Bihlmayer, G.; Blügel, S.; Wiesendanger, R., Phys. Rev. Lett., 96, Article 167203 pp. (2006)
[29] Liu, G. X.; Shen, L. H.; Ma, W. Y.; Yuan, L., Chin. J. Phys., 54, 121 (2016) · Zbl 1539.82354
[30] Shen, L. H.; Ma, W. Y.; Zhang, G. L.; Yang, S. P., Physica E, 71, 39 (2015)
[31] Liu, X. H.; Gong, Y. J.; Li, X. W., Philos. Mag. Lett., 96, 112 (2016)
[32] Liu, G. X.; Ma, W. Y.; Shen, L. H., Superlattices Microstruct., 88, 204 (2015)
[33] Xie, S. S.; Lu, M. W.; Chen, S. Y.; Qin, Y. J.; Wen, L.; Chen, J. L., Commun. Theor. Phys., 75, Article 015703 pp. (2023)
[34] Gradshteyn, I. S.; Ryzhik, I. M. (1980), Academic Press, Inc.: Academic Press, Inc. New York
[35] Lu, K. Y.; He, Z. Y.; Zu, M. M.; Guo, S. Y., IEEE Electr. Device L., 43, 1645 (2022)
[36] Winful, H. G., Phys. Rev. Lett., 91, Article 260401 pp. (2003)
[37] Ramos, R.; Spierings, D.; Racicot, I., Nature, 583, 529 (2020)
[38] Rusetsky, V. S.; Golyashov, V. A.; Eremeev, S. V.; Kusdov, D. A.; Rusinov, I. P.; Shamirzaev, T. S.; Mironov, A. V.; Damin, A. Y.; Tereshchenko, O. E., Phys. Rev. Lett., 129, Article 166802 pp. (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.