×

Traces of Sobolev spaces on piecewise Ahlfors-David regular sets. (English. Russian original) Zbl 1537.46035

Math. Notes 114, No. 3, 351-376 (2023); translation from Mat. Zametki 114, No. 3, 404-434 (2023).
Summary: Let \((\operatorname{X},\operatorname{d},\mu)\) be a metric measure space with uniformly locally doubling measure \(\mu \). Given \(p \in (1,\infty)\), assume that \((\operatorname{X},\operatorname{d},\mu)\) supports a weak local \((1,p)\)-Poincaré inequality. We characterize trace spaces of the first-order Sobolev \(W^1_p(\operatorname{X})\)-spaces to subsets \(S\) of \(\operatorname{X}\) that can be represented as a finite union \(\bigcup_{i=1}^NS^i\), \(N \in \mathbb{N} \), of Ahlfors-David regular subsets \(S^i \subset \operatorname{X}\), \(i \in \{1,\dots,N\} \), of different codimensions. Furthermore, we explicitly compute the corresponding trace norms up to some universal constants.

MSC:

46E36 Sobolev (and similar kinds of) spaces of functions on metric spaces; analysis on metric spaces
28A75 Length, area, volume, other geometric measure theory
30L99 Analysis on metric spaces

References:

[1] Garcia-Bravo, M.; Ikonen, T.; Zhu, Z., Extensions and Approximations of Banach-valued Sobolev functions arXiv: (0000) · Zbl 07767771
[2] Saksman, E.; Soto, T., Traces of Besov, Triebel-Lizorkin and Sobolev spaces on metric spaces, Anal. Geom. Metr. Spaces, 5, 1, 98-115 (2017) · Zbl 1394.46028 · doi:10.1515/agms-2017-0006
[3] Shvartsman, P., On extensions of Sobolev functions defined on regular subsets of metric measure spaces, J. Approx. Theory, 144, 2, 139-161 (2007) · Zbl 1121.46033 · doi:10.1016/j.jat.2006.05.005
[4] Tyulenev, A. I.; Vodop’yanov, S. K., Sobolev \(W^1_p\)-spaces on \(d\)-thick closed subsets of \(\mathbb{R}^n \), Sb. Math., 211, 6, 786-837 (2020) · Zbl 1462.46044 · doi:10.1070/SM9199
[5] Tyulenev, A. I.; Vodop’yanov, S. K., On the Whitney problem for weighted Sobolev spaces, Dokl. Math., 95, 1, 79-83 (2017) · Zbl 06731613 · doi:10.1134/S1064562417010276
[6] Tyulenev, A. I., Almost sharp descriptions of traces of Sobolev spaces on compacta, Math. Notes, 110, 6, 976-980 (2021) · Zbl 1483.46034 · doi:10.1134/S0001434621110377
[7] Gibara, R.; Korte, R.; Shanmugalingam, N., Solving a Dirichlet Problem on Unbounded Domains via a Conformal Transformation arXiv: (0000) · Zbl 07867547
[8] Gibara, R.; Shanmugalingam, N., Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces arXiv: (0000) · Zbl 07814411
[9] Maly, L., Trace and Extension Theorems for Sobolev-type Functions in Metric Spaces arXiv: (0000)
[10] Tyulenev, A. I., Restrictions of Sobolev \(W_p^1(\mathbb{R}^2)\)-spaces to planar rectifiable curves, Ann. Fenn. Math., 47, 1, 507-531 (2022) · Zbl 1495.46025 · doi:10.54330/afm.115393
[11] Tyulenev, A. I., Traces of Sobolev spaces to irregular subsets of metric measure spaces, Mat. Sb., 214, 9, 58-143 (2023) · Zbl 07838008
[12] Heinonen, J.; Koskela, P.; Shanmugalingam, N.; Tyson, J., Sobolev Spaces on Metric Measure Spaces. An Approach Based on Upper Gradients (2015), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1332.46001 · doi:10.1017/CBO9781316135914
[13] Martín, J.; Ortiz, W. A., A Sobolev type embedding theorem for Besov spaces defined on doubling metric spaces, J. Math. Anal. Appl., 479, 2, 2302-2337 (2019) · Zbl 1431.46017 · doi:10.1016/j.jmaa.2019.07.032
[14] Maly, L.; Shanmugalingam, N.; Snipes, M., Trace and extension theorems for functions of bounded variation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18, 1, 313-341 (2018) · Zbl 1406.46025
[15] Mattila, P., Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability (1995), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0819.28004 · doi:10.1017/CBO9780511623813
[16] Shmerkin, P., Porosity, Dimension, and Local Entropies: a Survey arXiv: (0000) · Zbl 1241.28008
[17] Järvenpää, E.; Järvenpää, M.; Käenmäki, A.; Rajala, T.; Rogovin, S.; Suomala, V., Packing dimension and Ahlfors regularity of porous sets in metric spaces, Math. Z., 266, 1, 83-105 (2010) · Zbl 1203.28006 · doi:10.1007/s00209-009-0555-2
[18] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 3, 428-517 (1999) · Zbl 0942.58018 · doi:10.1007/s000390050094
[19] Björn, A.; Björn, J., Nonlinear Potential Theory on Metric Spaces (2011), Zürich: European Math. Soc., Zürich · Zbl 1231.31001 · doi:10.4171/099
[20] Alvarado, R.; Wang, F.; Yang, D.; Yuan, W., Pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type, Studia Math., 268, 2, 121-166 (2023) · Zbl 1519.46028 · doi:10.4064/sm210621-29-4
[21] Bruno, T.; Peloso, M. M.; Vallarino, M., Besov and Triebel-Lizorkin spaces on Lie groups, Math. Ann., 377, 1-2, 335-377 (2020) · Zbl 1453.46025 · doi:10.1007/s00208-019-01927-z
[22] Gogatishvili, A.; Koskela, P.; Shanmugalingam, N., Interpolation properties of Besov spaces defined on metric spaces, Math. Nachr., 283, 2, 215-231 (2010) · Zbl 1195.46033 · doi:10.1002/mana.200810242
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.