×

On the evolution of the hierarchy of shock waves in a two-dimensional Isobaric medium. (English. Russian original) Zbl 1537.35241

Izv. Math. 88, No. 2, 284-312 (2024); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 88, No. 2, 96-126 (2024).
Summary: In the proposed paper, the process of propagation of shock waves in two-dimensional media without its own pressure drop is studied. The model of such media is a system of equations of gas dynamics, where formally the pressure is assumed to be zero. From the point of view of the theory of systems of conservation laws, the system of equations under consideration is in some sense degenerate, and, consequently, the corresponding generalized solutions have strong singularities (evolving shock waves with density in the form of delta functions on manifolds of different dimensions). We will denote this property as the evolution of the hierarchy of strong singularities or the evolution of the hierarchy of shock waves. In the paper, in the two-dimensional case, the existence of such an interaction of strong singularities with density delta function along curves in the space \(\mathbb{R}^2\) is proved, at which a density concentration occurs at a point, that is, a hierarchy of shock waves arises. The properties of such dynamics of strong singularities are described. The results obtained provide a starting point for moving on to a much more interesting multidimensional case in the future.

MSC:

35L67 Shocks and singularities for hyperbolic equations
35L65 Hyperbolic conservation laws
76N15 Gas dynamics (general theory)

References:

[1] G. G. Chernyi, Introduction to hypersonic flow, Academic Press, New York-London 1961.
[2] L. I. Sedov, Similarity and dimensional methods in mechanics, Academic Press, New York-London 1959. · Zbl 0121.18504
[3] K. P. Stanyukovich, Unsteady motions of a continuous medium, Nauka, Moscow 1971. (Russian)
[4] Ya. B. Zel’dovich, “Gravitational instability: an approximate theory for large density perturbations”, Astron. Astrophys. 5 (1970), 84-89.
[5] S. N. Gurbatov, A. I. Saichev, and S. F. Shandarin, “Large-scale structure of the Universe. The Zeldovich approximation and the adhesion model”, Phys. Usp. 55:3 (2012), 223-249. · doi:10.3367/UFNe.0182.201203a.0233
[6] L. V. Ovsyannikov, “Isobaric gas motions”, Differ. Equ. 30:10 (1994), 1656-1662. · Zbl 0851.76078
[7] A. P. Chupakhin, “On barochronic gas motions”, Dokl. Phys. 42:2 (1997), 101-104. · Zbl 0923.76268
[8] A. P. Chupakhin, Baroochronous motions of a gas, Author’s abstract diss. doct. fiz.-mat. nauk, Lavrentyev Institute of Hydrodynamics of Siberian Branch of the RAS, Novosibirsk 1999. (Russaian)
[9] A. N. Kraȋko, “On discontinuity surfaces in a medium devoid of ”proper“ pressure”, J. Appl. Math. Mech. 43:3 (1979), 539-549. · Zbl 0443.73017 · doi:10.1016/0021-8928(79)90102-3
[10] A. N. Kraiko and S. M. Sulaimanova, “Two-fluid flows of a mixture of a gas and solid particles with ”films“ and ”filaments“ appearing in flows past impermeable surfaces”, J. Appl. Math. Mech. 47:4 (1983), 507-516. · Zbl 0574.76107 · doi:10.1016/0021-8928(83)90090-4
[11] A. N. Kraiko, “The Mathematical Models for Description of Flow of Gas and Foreign Particles and for Non-Stationary Filtration of Liquids and Gas in Porous Medium”, Vestnik YuUrGU. Ser. Mat. Model. Progr. 7:1 (2014), 34-48. · Zbl 1290.76136 · doi:10.14529/mmp140104
[12] M. Y. Nemtsev, I. S. Menshov, and I. V. Semenov, “Numerical simulation of dynamic processes in the medium of fine-grained solid particles”, Math. Models Comput. Simul. 15:2 (2023), 210-226. · doi:10.1134/S2070048223020138
[13] Yu. G. Rykov, “A variational principle for a two-dimensional system of equations of gas dynamics without stress”, Russian Math. Surveys 51:1 (1996), 162-164. · Zbl 0874.76075 · doi:10.1070/RM1996v051n01ABEH002762
[14] A. I. Aptekarev and Yu. G. Rykov, “Emergence of a hierarchy of singularities in zero-pressure media. Two-dimensional case”, Math. Notes 112:4 (2022), 495-504. · Zbl 1504.35280 · doi:10.1134/S0001434622090206
[15] N. V. Klyushnev and Yu. G. Rykov, “On model two-dimensional pressureless gas flows: variational description and numerical algorithm based on adhesion dynamics”, Comput. Math. Math. Phys. 63:4 (2023), 606-622. · Zbl 07691044 · doi:10.1134/S0965542523040097
[16] F. Bouchut, “On zero pressure gas dynamics”, Advances in kinetic theory and computing, Ser. Adv. Math. Appl. Sci., vol. 22, World Sci. Publ., River Edge, NJ 1994, pp. 171-190. · Zbl 0863.76068 · doi:10.1142/9789814354165_0006
[17] I. Veinan, Yu. G. Rykov, and Ya. G. Sinai, “The Lax-Oleinik variational principle for some one-dimensional systems of quasilinear equations”, Russian Math. Surveys 50:1 (1995), 220-222. · Zbl 0848.35073 · doi:10.1070/RM1995v050n01ABEH001677
[18] E. Grenier, “Existence globale pour la système des gaz sans pression”, C. R. Acad. Sci. Paris Sér. I Math. 321:2 (1995), 171-174. · Zbl 0837.35088
[19] Weinan E, Yu. G. Rykov, and Ya. G. Sinai, “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys. 177:2 (1996), 349-380. · Zbl 0852.35097 · doi:10.1007/BF02101897
[20] Yu. G. Rykov, “Solutions with substance decay in pressureless gas dynamics systems”, Math. Notes 108:3 (2020), 465-468. · Zbl 1451.35137 · doi:10.1134/S0001434620090187
[21] N. V. Klyushnev and Yu. G. Rykov, “Non-conventional and conventional solutions for one-dimensional pressureless gas”, Lobachevskii J. Math. 42:11 (2021), 2615-2625. · Zbl 1477.35145 · doi:10.1134/S1995080221110159
[22] Feimin Huang and Zhen Wang, “Well posedness for pressureless flow”, Comm. Math. Phys. 222:1 (2001), 117-146. · Zbl 0988.35112 · doi:10.1007/s002200100506
[23] Jiequan Li and G. Warnecke, “Generalized characteristics and the uniqueness of entropy solutions to zero-pressure gas dynamics”, Adv. Differential Equations 8:8 (2003), 961-1004. · Zbl 1035.35072
[24] R. Hynd, “Sticky particle dynamics on the real line”, Notices Amer. Math. Soc. 66:2 (2019), 162-168. · Zbl 1414.70005 · doi:10.1090/noti1788
[25] R. Hynd, “A trajectory map for the pressureless Euler equations”, Trans. Amer. Math. Soc. 373:10 (2020), 6777-6815. · Zbl 1448.35376 · doi:10.1090/tran/8118
[26] Jiequan Li, Tong Zhang, and Shuli Yang, The two-dimensional Riemann problem in gas dynamics, Pitman Monogr. Surveys Pure Appl. Math., vol. 98, Longman, Harlow 1998. · Zbl 0935.76002 · doi:10.1201/9780203719138
[27] J. F. Colombeau, Elementary introduction to new generalized functions, North-Holland Math. Stud., vol. 113, Notes on Pure Math., 103, North-Holland Publishing Co., Amsterdam 1985. · Zbl 0584.46024
[28] Yu. G. Rykov, “The Singularities of Type of Shock Waves in Pressureless Medium, the Solutions in the Sense of Measures and Kolombo”s Sense”, Keldysh Institute preprints, 1998, 030.
[29] Yu. G. Rykov, “On the nonhamiltonian character of shocks in 2-D pressureless gas”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5:1 (2002), 55-78. · Zbl 1096.35117
[30] A. I. Aptekarev and Yu. G. Rykov, “Variational principle for multidimensional conservation laws and pressureless media”, Russian Math. Surveys 74:6 (2019), 1117-1119. · Zbl 1439.35316 · doi:10.1070/RM9918
[31] A. I. Aptekarev and Yu. G. Rykov, “Detailed description of the evolution mechanism for singularities in the system of pressureless gas dynamics”, Dokl. Math. 99:1 (2019), 79-82. · Zbl 1461.76376 · doi:10.1134/S1064562419010253
[32] Yicheng Pang, “The Riemann problem for the two-dimensional zero-pressure Euler equations”, J. Math. Anal. Appl. 472:2 (2019), 2034-2074. · Zbl 1415.35195 · doi:10.1016/j.jmaa.2018.12.046
[33] Jiequan Li and Hanchun Yang, “Delta-shocks as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics”, Quart. Appl. Math. 59:2 (2001), 315-342. · Zbl 1019.76040 · doi:10.1090/qam/1827367
[34] V. M. Shelkovich, “δ-and δ ′ -shock wave types of singular solutions of systems of conservation laws and transport and concentration processes”, Russian Math. Surveys 63:3 (2008), 473-546. · Zbl 1194.35005 · doi:10.1070/RM2008v063n03ABEH004534
[35] S. Albeverio, O. S. Rozanova, and V. M. Shelkovich, Transport and concentration processes in the multidimensional zero-pressure gas dynamics model with the energy conservation law, arXiv: 1101.5815.
[36] K. Khanin and A. Sobolevski, “Particle dynamics inside shocks in Hamilton-Jacobi equations”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 368:1916 (2010), 1579-1593. · Zbl 1192.35034 · doi:10.1098/rsta.2009.0283
[37] K. Khanin and A. Sobolevski, “On dynamics of Lagrangian trajectories for Hamilton-Jacobi equations”, Arch. Ration. Mech. Anal. 219:2 (2016), 861-885. · Zbl 1333.35201 · doi:10.1007/s00205-015-0910-x
[38] M. Sever, “An existence theorem in the large for zero-pressure gas dynamics”, Differential Integral Equations 14:9 (2001), 1077-1092. · Zbl 1023.35068 · doi:10.57262/die/1356124308
[39] A. Bressan and Truyen Nguyen, “Non-existence and non-uniqueness for multidimensional sticky particle systems”, Kinet. Relat. Models 7:2 (2014), 205-218. · Zbl 1311.35192 · doi:10.3934/krm.2014.7.205
[40] S. Bianchini and S. Daneri, On the sticky particle solutions to the multi-dimensioanl pressureless Euler equations, arXiv: 2004.06557.
[41] Yu. G. Rykov, “2D pressureless gas dynamics and variational principle”, Keldysh Institute preprints, 2016, 094. · doi:10.20948/prepr-2016-94
[42] Yu. G. Rykov, “On the interaction of shock waves in two-dimensional isobaric media”, Russian Math. Surveys 78:4 (2023), 779-781. · Zbl 1537.35240 · doi:10.4213/rm10145
[43] Yu. G. Rykov, “Concentration processes in a two dimensional system of gas dynamics equations without pressure”, Sb. Tez. 2nd Matem. Konf. Centrov, Russia Nov. 7-11, 2022 (Moscow State University), Moscow State University Press, Moscow 2022, pp. 192-194.
[44] A. Chertock, A. Kurganov, and Yu. Rykov, “A new sticky particle method for pressureless gas dynamics”, SIAM J. Numer. Anal. 45:6 (2007), 2408-2441. · Zbl 1234.35145 · doi:10.1137/050644124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.