×

Representations of the Laurent series Rota-Baxter algebras and regular-singular decompositions. (English) Zbl 1537.16022

Summary: There is a Rota-Baxter algebra structure on the field \(A = \mathbf{k}((t))\) with \(P\) being the projection map from \(A = \mathbf{k} [[t]] \oplus t^{- 1} \mathbf{k} [ t^{- 1}]\) onto \(\mathbf{k} [[t]]\). We study the representation theory and regular-singular decompositions of any finite dimensional \(A\)-vector space. The main result shows that the category of finite dimensional representations is semisimple and consists of exactly three isomorphism classes of irreducible representations which are all one-dimensional. As a consequence, the number of \(\mathrm{G L}_A(V)\)-orbits in the set of all regular-singular decompositions of an \(n\)-dimensional \(A\)-vector space \(V\) is \((n + 1)(n + 2) / 2\). We also use the result to compute the generalized class number, i.e., the number of the \(\mathrm{G L}_n(A)\)-isomorphism classes of finitely generated \(\mathbf{k} [[t]]\)-submodules of \(A^n\).

MSC:

16G60 Representation type (finite, tame, wild, etc.) of associative algebras
17B38 Yang-Baxter equations and Rota-Baxter operators
13F25 Formal power series rings
14H60 Vector bundles on curves and their moduli
16S32 Rings of differential operators (associative algebraic aspects)
16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
11R29 Class numbers, class groups, discriminants

References:

[1] Aguiar, M., On the associative analog of Lie bialgebras, J. Algebra, 244, 492-532 (2001) · Zbl 0991.16033
[2] Aguiar, M.; Moreira, W., Combinatorics of the free Baxter algebra, Electron. J. Comb., 13, 1, R17 (2006) · Zbl 1085.05006
[3] Andrews, G.; Guo, L.; Keigher, W.; Ono, K., Baxter algebras and Hopf algebras, Trans. Am. Math. Soc., 355, 4639-4656 (2003) · Zbl 1056.16025
[4] Bai, C.; Bellier, O.; Guo, L.; Ni, X., Spliting of operations, Manin products and Rota-Baxter operators, Int. Math. Res. Not., 2013, 485-524 (2013) · Zbl 1314.18010
[5] Bai, C., A unified algebraic approach to the classical Yang-Baxter equation, J. Phys. A, Math. Theor., 40, 11073-11082 (2007) · Zbl 1118.17008
[6] Bai, C.; Guo, L.; Pei, J., Splitting operads and Rota-Baxter operators on operads, Appl. Categ. Struct., 25, 4, 505-538 (2017) · Zbl 1423.18031
[7] Baxter, G., An analytic problem whose solution follows from a simple algebraic identity, Pac. J. Math., 10, 731-742 (1960) · Zbl 0095.12705
[8] Beauville, A.; Laszlo, Y., Conformal blocks and generalized theta functions, Commun. Math. Phys., 164, 2, 385-419 (1994) · Zbl 0815.14015
[9] Cartier, P., On the structure of free Baxter algebras, Adv. Math., 9, 253-265 (1972) · Zbl 0267.60052
[10] (Cassidy, P.; Guo, L.; Keigher, W.; Sit, W., Differential Algebra and Related Topics. Differential Algebra and Related Topics, Proceedings for the International Workshop in Newark, NJ, 2000 (2002), World Sci. Publishing) · Zbl 0992.00025
[11] Claborn, L., Every abelian group is a class group, Pac. J. Math., 18, 219-222 (1966) · Zbl 0166.30602
[12] Connes, A.; Kreimer, D., Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys., 199, 203-242 (1998) · Zbl 0932.16038
[13] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys., 210, 1, 249-273 (2000) · Zbl 1032.81026
[14] Connes, A.; Marcolli, M., From physics to number theory via noncommutative geometry, part II: renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory, (Frontiers in Number Theory, Physics, and Geometry (2006), Springer-Verlag), 617-713
[15] Ebrahimi-Fard, K., Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys., 61, 139-147 (2002) · Zbl 1035.17001
[16] Ebrahimi-Fard, K.; Gracia-Bondía, J. M.; Guo, L.; Várilly, J. C., Combinatorics of renormalization as matrix calculus, Phys. Lett. B, 632, 552-558 (2006) · Zbl 1247.81319
[17] Ebrahimi-Fard, K.; Guo, L., Quasi-shuffles, mixable shuffles and Hopf algebras, J. Algebraic Comb., 24, 83-101 (2006) · Zbl 1103.16025
[18] Ebrahimi-Fard, K.; Guo, L., Rota-Baxter algebras and dendriform algebras, J. Pure Appl. Algebra, 212, 320-339 (2008) · Zbl 1132.16032
[19] Ebrahimi-Fard, K.; Guo, L., Matrix representation of renormalization in perturbative quantum field theory (August 2005), preprint
[20] Ebrahimi-Fard, K.; Guo, L., Rota-Baxter algebras in renormalization of perturbative quantum field theory, (Proceedings of the Workshop on Renormalization and Universality in Mathematical Physics (October 2005), Fields Institute), 18-22
[21] Ebrahimi-Fard, K.; Guo, L.; Kreimer, D., Spitzer’s identity and the algebraic Birkhoff decomposition in pQFT, J. Phys. A, Math. Gen., 37, 11037-11052 (2004) · Zbl 1062.81113
[22] Guo, K. Ebrahimi-Fard L.; Manchon, D., Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion, Commun. Math. Phys., 267, 821-845 (2006) · Zbl 1188.17020
[23] Guo, L., Properties of Baxter algebras, Adv. Math., 151, 2, 346-374 (2000) · Zbl 0964.16028
[24] Guo, L., WHAT IS a Rota-Baxter algebra, Not. Am. Math. Soc., 56, 1436-1437 (2009) · Zbl 1184.16038
[25] Guo, L., An Introduction to Rota-Baxter Algebras (2012), International Press · Zbl 1271.16001
[26] Guo, L.; Lin, Z., Representations and modules of Rota-Baxter algebras, Asian J. Math., 25, 6, 841-870 (2021) · Zbl 1517.17018
[27] Guo, L.; Zhang, B., Renormalization of multiple zeta values, J. Algebra, 319, 9, 3770-3809 (2008) · Zbl 1165.11071
[28] Hotta, R.; Takeuchi, K.; Tanisaki, T., D-Modules-Perverse-Sheaves-and-Representation-Theory (2008), Birkhäuser: Birkhäuser Boston · Zbl 1136.14009
[29] Kac, V., Vertex Algebras for Beginners, University Lecture Series, vol. 10 (1997), American Mathematical Society: American Mathematical Society Providence, RI
[30] Kumar, S.; Narasimhan, M., Infinite Grassmannians and moduli spaces of G-bundles, Math. Ann., 300, 41-76 (1994) · Zbl 0803.14012
[31] Leedham-Green, C. R., The idea class groups of Dedekind domains, Trans. Am. Math. Soc., 163, 493-500 (1972) · Zbl 0231.13008
[32] Rota, G., Baxter algebras and combinatorial identities I, Bull. Am. Math. Soc., 5, 325-329 (1969) · Zbl 0192.33801
[33] Rota, G., Baxter operators, an introduction, (Kung, Joseph P. S., Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries (1995), Birkhäuser: Birkhäuser Boston) · Zbl 0841.01031
[34] Rota, G.; Smith, D. A., Fluctuation theory and Baxter algebras, (Istituto Nazionale di Alta Mathematica, Symposia Mathematica, vol. IX (1972)), 179-201 · Zbl 0255.08003
[35] Zhu, X., An introduction to affine Grassmannians and the geometric Satake equivalence, (Geometry of Moduli Spaces and Representation Theory. Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., vol. 24 (2017), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 59-154 · Zbl 1453.14122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.