×

Transport and scale interactions in geophysical flows. Abstracts from the workshop held July 16–21, 2023. (English) Zbl 1537.00023

Summary: This interdisciplinary workshop brought together researchers working on different aspects of transport and scale interactions across the spectrum of geophysical fluid dynamics: geometry and computation of transport and exchange processes in geophysical flows, Lagrangian coherent structures, (geo-strophic) turbulence, nonlinear waves and coherent structures in the Eulerian description of fluids, and stochastic methods in multiscale systems. Each of these topics have their own vibrant communities as well as well-established and emerging connections. This meeting aimed to bridge across the entire span of topics from a dynamical systems perspective, and to connect classical approaches with new developments in data-driven modeling and stochastic modeling.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
76-06 Proceedings, conferences, collections, etc. pertaining to fluid mechanics
86-06 Proceedings, conferences, collections, etc. pertaining to geophysics
76F25 Turbulent transport, mixing
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
35Q30 Navier-Stokes equations
Full Text: DOI

References:

[1] S. Balasuriya, Stochastic sensitivity: A computable Lagrangian uncertainty measure for unsteady flows, SIAM Review 62 (2020), 781-816-120. · Zbl 1459.76108
[2] J. Berner et al, Stochastic parameterization: Towards a new view of weather and climate models, Bulletin of the American Meteorological Society 98 (2017), 565-588.
[3] Yu. Blagoveshchenskii, Diffusion processes depending on a small parameter, Theory of Prob-ability and its Applications VII (1962), 130-146. · Zbl 0112.09504
[4] D. Sans-Alonzo and A. Stuart, Gaussian approximations of small noise diffusions in Kullback-Leibler divergence, Communications in Mathematical Sciences 15 (2017), 2087-2097. · Zbl 1384.28018
[5] S. Särkkä and A. Solin, Applied Stochastic Differential Equations (2019), Cambridge Uni-versity Press. Nonlinear dynamics of golden tides Francisco J. Beron-Vera (joint work with F. Andrade-Cano, G.J. Goni, D. Karrasch, M.J. Olascoaga and J. Triñanes)
[6] Geometric fluid mechanics casts new light on the problem of Sargassum inun-dation, commonly referred to as golden tides, in the Caribbean Sea [2]. Pelagic Sargassum is a genus of large brown seaweed (a type of alga). A raft of pelagic Sargassum is composed of clumps formed by flexible stems which are kept afloat by means of bladders filled with gas. A raft drifts under the action of ocean currents and winds, subjected to physiological changes which are not considered here. References
[7] F. Andrade-Canto, D. Karrasch, F.J. Beron-Vera, Genesis, evolution, and apocalyse of Loop Current rings, Phys. Fluids 32 (2020), 116603.
[8] F. Andrade-Canto, F.J. Beron-Vera, G.J. Goni, D. Karrasch, M.J. Olascoaga and J. Triñanes, Carriers of Sargassum and mechanism for coastal inundation in the Caribbean Sea, Phys. Fluids 34 (2022), 016602.
[9] F.J. Beron-Vera, Extended shallow-water theories with thermodynamics and geometry, Phys. Fluids 33 (2021), 106605.
[10] F.J. Beron-Vera, P. Miron, A minimal Maxey-Riley model for the drift of Sargassum, J. Fluid Mech. 904 (2020), A8. · Zbl 1460.86011
[11] G. Haller, F.J. Beron-Vera, Coherent Lagrangian vortices: The black holes of turbulence, J. Fluid Mech. 731 (2013), R4. · Zbl 1294.76188
[12] G. Haller, A. Hadjighasem, M. Farazmand, F. Huhn, Defining coherent vortices objectively from the vorticity, J. Fluid Mech. 795 (2016), 136-173. · Zbl 1359.76096
[13] G. Haller, D. Karrasch, F. Kogelbauer, Material barriers to diffusive and stochastic trans-port, Proc. Nat. Acad. Sci. USA 115 (2018), 9074-9079. References · Zbl 1416.76303
[14] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free Prediction of Large Spa-tiotemporally Chaotic Systems from Data: A Reservoir Computing Approach, Phys. Rev. Lett. 120 (2018), 024102
[15] P. Cvitanović, R. L. Davidchack, and E. Siminos. On the state space geometry of the Ku-ramoto-Sivashinsky flow in a periodic domain. J. Appl. Dyn. Syst. 9 (2010), 1-33 · Zbl 1267.35027
[16] S. Kneer, and N. B. Budanur, Learning the dynamics of symmetry-reduced chaotic attractors from data (working title). In preparation (2023). References
[17] H. Hersbach, B. Bell, P. Berrisford, A. J. M. S. Horányi, J. Muñoz Sabater, J. Nicolas, R. Radu, D. Schepers, A. Simmons, C. Soci, et al. Global reanalysis: goodbye ERA-interim, hello ERA5. ECMWF newsletter, 159:17-24, 2019.
[18] Mohamed H. M. Sulman, Helga S. Huntley, B. L. Lipphardt, and A. D. Kirwan. Leaving flatland: Diagnostics for lagrangian coherent structures in three-dimensional flows. Physica D: Nonlinear Phenomena, 258:77-92, 2013. · Zbl 1356.76108
[19] S. M. Khaykin, B. Legras, S. Bucci, P. Sellitto, L. Isaksen, F. Tence, S. Bekki, A. Bourassa, L. Rieger, D. Zawada, et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Communications Earth & Environment, 1(1):1-12, 2020.
[20] G. P. Kablick, D. R. Allen, M. D. Fromm, and G. E. Nedoluha. Australian Pyrocb Smoke generates synoptic-scale stratospheric anticyclones. Geophysical Research Letters, 47(13):e2020GL088101, 2020.
[21] J. Curbelo, I. I. Rypina. A three dimensional Lagrangian analysis of the smoke plume from the 2019/2020 Australian wildfire event. (Available at https://doi.org/10.1002/essoar. 10512436.1, Submitted 2023.). References · doi:10.1002/essoar.10512436.1
[22] Molinari, R., and A. D. Kirwan, 1975: Calculations of Differential Kinematic Properties from Lagrangian Observations in the Western Caribbean Sea. J. Phys. Oceanogr., 5, 483-491.
[23] Rypina, I. I., T. R. Getscher, L. J. Pratt, and B. Mourre, 2021: Observing and Quantifying Ocean Flow Properties Using Drifters with Drogues at Different Depths. J. Phys. Oceanogr., 51, 2463-2482.
[24] Haller, G., Hadjighasem, A., Farazmand, M., and Huhn, F. (2016). Defining coher-ent vortices objectively from the vorticity. Journal of Fluid Mechanics, 795, 136-173. doi:10.1017/jfm.2016.151. References · Zbl 1359.76096 · doi:10.1017/jfm.2016.151.References
[25] Gary Froyland. Dynamic isoperimetry and the geometry of Lagrangian coherent structures. Nonlinearity, 28:3587-3622, 2015 · Zbl 1352.37063
[26] Michael C. Denes, Gary Froyland, and Shane R. Keating. Persistence and material coherence of an ocean eddy. Physical Review Fluids, 7(3):034501, 2022.
[27] Michael Denes, Shane R. Keating, and Gary Froyland. Bathymetry imposes a global pattern of cross-front transport in the Southern Ocean. arXiv, 2023.
[28] Gary Froyland and Péter Koltai. Detecting the birth and death of finite-time coherent sets. Communications on Pure and Applied Mathematics. 2023
[29] Faheem Gilani, Dimitrios Giannakis, and John Harlim. Kernel-based prediction of non-markovian time series. Physica D: Nonlinear Phenomena, 418 (2021) 132829. · Zbl 1490.62289
[30] John Harlim, Shixiao W Jiang, Senwei Liang, and Haizhao Yang. Machine learning for prediction with missing dynamics. Journal of Computational Physics, 428 (2021)109922. · Zbl 07511409
[31] Shixiao W Jiang and John Harlim. Modeling of missing dynamical systems: Deriving para-metric models using a nonparametric framework. Research in the Mathematical Sciences, 7 (2020)1-25. · Zbl 1447.37067
[32] Di Qi and John Harlim. Machine learning-based statistical closure models for turbulent dynamical systems. Philosophical Transactions of the Royal Society A, 380 (2022) 20210205.
[33] Di Qi and John Harlim. A data-driven statistical-stochastic surrogate modeling strategy for complex nonlinear non-stationary dynamics. Journal of Computational Physics, 485 (2023) 112085. · Zbl 07690206
[34] He Zhang, John Harlim, and Xiantao Li. Error bounds of the invariant statistics in machine learning of ergodic Itô diffusions. Physica D, 427 (2021)133022. References · Zbl 1482.60108
[35] Holm, D. D., 2002. Euler-Poincaré dynamics of perfect complex fluids. Geometry, Mechan-ics, and Dynamics, 169-180. Retrievable from https://doi.org/10.1007/0-387-21791-6_4 · Zbl 1114.37308 · doi:10.1007/0-387-21791-6_4
[36] Holm, D.D., 2015. Variational principles for stochastic fluid dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2176), p.20140963. Retrievable from https://doi.org/10.1098/rspa.2014.0963 · Zbl 1371.35219 · doi:10.1098/rspa.2014.0963
[37] Holm, D. D. (2019). Stochastic closures for wave-current interaction dynamics. Jour-nal of Nonlinear Science, 29 , 2987-3031. Retrievable from https://doi.org/10.1007/ s00332-019-09565-0 · Zbl 1427.76040
[38] Holm, D. D., Hu, R., & Street, O. D. (2022a). Coupling of waves to sea surface currents via horizontal density gradients. Retrievable from http://arxiv.org/abs/2202.04446
[39] Holm, D. D., Hu, R., & Street, O. D. (2022b). Lagrangian reduction and wave mean flow interaction. Retrievable from http://arxiv.org/abs/2301.04121
[40] Holm, D.D., Marsden, J.E. and Ratiu, T.S., 1998. The Euler-Poincaré equations and semidi-rect products with applications to continuum theories. Advances in Mathematics, 137(1), pp.1-81. Retrievable from https://doi.org/10.1006/aima.1998.1721 · Zbl 0951.37020 · doi:10.1006/aima.1998.1721
[41] NASA-SWOT Surface Water and Ocean Topography, 2023. https://swot.jpl.nasa.gov References
[42] Y. Huang, N. Yuan, M. Shi, et al., On the Air-Sea Couplings Over Tropical Pacific: An Instantaneous Coupling Index Using Dynamical Systems Metrics, Geophysical Research Letters 49 (2022), e2021GL09704.
[43] Y. Huang, M. Shi, Z. Fu, A Dynamical Systems Perspective to Characterize the El Niño Diversity in Spatiotemporal Patterns, Frontiers in Physics 10 (2022), 919951.
[44] M. Shi, Y. Huang, Z. Fu, Dynamical systems persistence parameter of sea surface tempera-ture and its associations with regional averaged index over the tropical Pacific, International Journal of Climatology 42 (2022), 7550-7562.
[45] D. Faranda, G. Messori, P. Yiou, Diagnosing concurrent drivers of weather extremes: appli-cation to warm and cold days in North America, Climate Dynamics 54 (2020), 2187-2201. References
[46] R. C. Gonçalves, M. Iskandarani, T. Özgökmen, W. C. Thacker, Reconstruction of Subme-soscale Velocity Field from Surface Drifters, J. Phys. Oceanogr. 49, (2019) 941-958.
[47] H. Kawai, Scale dependence of divergence and vorticity of near-surface flows in the sea. Part 1. Measurements and calculations of area-averaged divergence and vorticity, J. Oceanogr. Soc. Jpn. 41 (1985) 157-166.
[48] R. Molinari, A. D. Kirwan Jr., Calculations of differential kinematic properties from La-grangian observations in the Western Caribbean Sea, J. Phys. Oceanogr. 5 (1975) 483-491.
[49] A. Okubo, C. C. Ebbesmeyer, J. M. Helseth, Determination of Lagrangian deformations from analysis of current followers, J. Phys. Oceanogr. 6 (1976) 524-527.
[50] S. Petterssen, On the relation between vorticity, deformation and divergence and the con-figuration of the pressure field, Tellus 5 (1953) 231-237. References
[51] B. J. Bayly, Three-dimensional instabilities in quasi-two dimensional inviscid flows, Non-linear wave Interactions in fluids (ed. R. W. Miksad et al.), 71-77, ASME, New York, 1987.
[52] J. Chu, D. Ionescu-Kruse, Y. Yang, Exact solution and instability for geophysical waves at arbitrary latitude, Disc. Cont. Dyn. Syst. 39 (2019), 4399-4414. · Zbl 1419.37075
[53] J. Chu, D. Ionescu-Kruse, Y. Yang, Exact solution and instability for geophysical waves with centripetal forces at arbitrary latitude, J. Math. Fluid Mech.21 (2019), Art. No.: UNSP 19. · Zbl 1411.86002
[54] A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res.117 (2012), C05029.
[55] A. Constantin, P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res.-Oceans 118 (2013), 2802-2810.
[56] A. Constantin, R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr. 46 (2016), 1935-1945.
[57] A. Constantin, R. S. Johnson, An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current, J. Phys. Oceanogr. 46 (2016), 3585-3594.
[58] A. Constantin, S. G. Monismith, Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech. 820 (2017), 511-528. · Zbl 1387.86009
[59] B. Cushman-Roisin, J. M. Beckers, “Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects”, Academic, Waltham, Mass., 2011. · Zbl 1319.86001
[60] S. Friedlander, M. M. Vishik, Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett. 66 (1991), 2204-2206. · Zbl 0968.76543
[61] A. E. Gill, “Atmosphere-Ocean Dynamics”, Academic, 1982.
[62] D. Henry, On three-dimensional Gerstner-like equatorial water waves, Philos. Trans. Roy. Soc. A 376 (2018), no. 2111, 20170088, 16 pp. · Zbl 1404.76040
[63] D. Ionescu-Kruse, Instability of equatorially trapped waves in stratified water, Ann. Mat. Pura Appl. 195 (2016), 585-599. · Zbl 1352.35191
[64] D. Ionescu-Kruse, Instability of Pollard’s exact solution for geophysical ocean flows, Physics of Fluids 28 (2016), no.086601.
[65] D. Ionescu-Kruse, Local stability for an exact steady purely azimuthal flow which models the Antarctic Circumpolar Current, J. Math. Fluid Mech. 20 (2018), 569-579. · Zbl 1458.76045
[66] D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Philos. Trans. R. Soc. A 376 (2018), 20170090. · Zbl 1404.76290
[67] D. Ionescu-Kruse, C. I. Martin, Local Stability for an Exact Steady Purely Azimuthal Equa-torial Flow, J. Math. Fluid Mech. 20 (2018), 27-34. · Zbl 1394.76020
[68] S. Leblanc, Local stability of Gerstner’s waves, J. Fluid Mech. 506 (2004), 245-254. · Zbl 1062.76019
[69] A. Lifschitz, E. Hameiri, Local stability conditions in fluid dynamics., Phys. Fluids 3 (1991), 2644-2651. · Zbl 0746.76050
[70] J. Pedlosky, ”Geophysical Fluid Dynamics, Springer, New York, 1979. · Zbl 0429.76001
[71] R. T. Pollard, Surface waves with rotation: An exact solution, J. Geophys. Res. 75 (1970), 5895-5898. References · Zbl 0218.76098
[72] Gottwald, G. A. and Melbourne, I. (2004). A new test for chaos in deterministic systems. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engi-neering Sciences, 460(2042):603-611. · Zbl 1042.37060
[73] Gottwald, G. A. and Melbourne, I. (2016). The 0-1 test for chaos: A review. Chaos detection and predictability, pages 221-247. References
[74] I. Horenko, On a Scalable Entropic Breaching of the Overfitting Barrier for Small Data Problems in Machine Learning, Neural Comput., 32, 1563-1579 (2020) · Zbl 1473.68146
[75] J. He, L. Li, J. Xu, Ch. Zheng, ReLU deep neural networks and linear finite elements, J. Comput. Math., 38:3, 502-527 (2020) · Zbl 1463.68072
[76] St.J. Wright, B. Recht, Opitimzation for data analysis, Cambridge University Press (2022), https://doi.org/10.1017/9781009004282 · Zbl 1509.90200 · doi:10.1017/9781009004282
[77] Z. Klawikowska, A. Miko lajczyk, M. Grochowski, Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks, in: L. Rutkowski et al. (Eds.), ICAISC 2020, LNAI 12415, pp. 134-146, 2020.
[78] B. Dickson, https://bdtechtalks.com/2020/12/16/machine-learning-adversarial-attacks-against-machine-learning-time-bomb/ (original) https://www.kdnuggets.com/2021/01/machine-learning-adversarial-attacks.html (re-post)
[79] N. Akhtar, A. Mian, N. Kardan, M. SHAH, Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey, IEEE Access, 9, 155161-155196
[80] S. Gerber, L. Pospisil, M. Navandar, I. Horenko, Low-cost scalable discretization, prediction, and feature selection for complex systems, Sci. Adv., 6:5, eaaw0961 (2020)
[81] I. Horenko, Scalable Entropy-Optimal Machine Learning Classification for Small Data Prob-lems, PNAS, 119:9, e2119659119 (2022)
[82] E. Vecchi, Efficient and scalable solution techniques for small data learning problems, Dis-sertation, Faculty of Informatics, Università della Svizzera Italiana, Lugano (2023)
[83] E. Vecchi, L. Pospisil, S. Albrecht, T.J. O’Kane, I. Horenko, Scalable Entropy-Optimal Machine Learning Classification for Small Data Problems, Neural Comput., 34:5, 1220-1255 (2022) · Zbl 1492.68117
[84] I. Horenko, E. Vecchi, J. Kardos, Andreas Wächter, Olaf Schenk, Terence O’Kane, Patrick Gagliardini, Susanne Gerber, On cheap entropy-sparsified regression learning, PNAS, 120:1, e2214972120 (2023) References
[85] C. Mendoza, A. M. Mancho, The hidden geometry of ocean flows, Phys. Rev. Lett., 105 (2010), 038501.
[86] A. M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza, Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems, Communi-cations in Nonlinear Science and Numerical Simulations, 18 (2013), 3530-3557. · Zbl 1344.37031
[87] C. Lopesino, F. Balibrea-Iniesta, V. J. García-Garrido, S. Wiggins, A. M. Mancho, A the-oretical framework for Lagrangian Descriptors, International Journal of Bifurcation and Chaos, 27 (2017), 1730001. · Zbl 1358.34048
[88] R. Bruera, J. Curbelo, G. Garcia-Sanchez, A.M. Mancho, Mixing and Geometry in the North Atlantic Meridional Overturning Circulation, Geophysical Research Letters 50 (2023), e2022GL102244.
[89] ECCO Consortium, Fukumori, I., Wang, O., Fenty, I., Forget, G., Heim-bach, P.,Ponte, R. M. ECCO Central Estimate (Version 4 Release 4).394
[90] G. García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, B. Pérez-Gómez, E. Álvarez-Fanjul, M. G. Sotillo, M. García-León, V. J. García-Garrido, S. Wiggins, Very High Resolu-tion Tools for the Monitoring and Assessment of Environmental Hazards in Coastal Areas, Frontiers in Marine Science 7 (2021), 605804.
[91] G. García-Sánchez, A. M. Mancho, S. Wiggins, A bridge between invariant dynamical struc-tures and uncertainty quantification, Commun. Nonlinear Sci. Numer. Simul. 104 (2022), 106016. · Zbl 1483.37114
[92] G. García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, S. Wiggins, Structured pathways in the turbulence organizing recent oil spill events in the Eastern Mediterranean , Scientific Reports 12 (2022), 3662.
[93] G. García-Sánchez, A. M. Mancho, M. Agaoglou, S. Wiggins, New links between invariant dynamical structures and uncertainty quantification, Physica D. 453 (2023), 133826. References · Zbl 1516.37134
[94] A. Jordi, G. Basterretxea, S. Anglès, Influence of ocean circulation on phytoplankton biomass distribution in the Balearic Sea: Study based on Sea-viewing Wide Field-of-view Sensor and altimetry satellite data, J. Geophys. Res. 114 (2009), C11005.
[95] J. Gower, C. Hu, G. Borstad, S. King, Ocean Color Satellites Show Extensive Lines of Floating Sargassum in the Gulf of Mexico, IEEE Transactions on Geoscience and Remote Sensing 44 (2006) 3619-3625
[96] C. Reartes, P.D. Mininni, Dynamical regimes and clustering of small neutrally buoyant inertial particles in stably stratified turbulence, Phys. Rev. Fluids 8 (2023), 054501. Report on work relating to Sampling-Dependent Transition Paths of Iceland-Scotland Overflow Water Philippe Miron Recently introduced in oceanography to interpret the near-surface circulation, transition path theory (TPT) is a methodology that rigorously characterizes en-sembles of trajectory pieces flowing out from a source last and into a target next, i.e., those that most productively contribute to transport. As part of two recent publications, we used TPT to study the deep circulation of the North Atlantic References
[97] F.J. Beron-Vera, M.J. Olascoaga, L. Helfmann and P. Miron, Sampling-Dependent Tran-sition Paths of Iceland-Scotland Overflow Water, Journal of Physical Oceanography 53 (2022), 1151-1160.
[98] P. Miron, F.J. Beron-Vera and M.J. Olascoaga, Transition paths of North Atlantic Deep Water, Journal of Atmospheric and Oceanic Technology 39 (2022), 959-971. References
[99] F. Noethen, Stepsize Variations for Lyapunov Exponents to Counter Persistent Errors, (2023) arXiv:2112.11388v2. References
[100] M. R. Maxey, J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26 (1983),883. · Zbl 0538.76031
[101] F.J. Beron-Vera, M.J. Olascoaga and P. Miron, Building a Maxey-Riley framework for surface ocean inertial particle dynamics, Phys. Fluids 31 (2019), 096602.
[102] M.J. Olascoaga, F.J. Beron-Vera, P. Miron, J. Triñanes, N.F. Putman, R. Lumpkin, G.J. Goni, Observation and quantification of inertial effects on the drift of floating objects at the ocean surface, Phys. Fluids 32 (2020), 026601.
[103] P. Miron, M.J. Olascoaga, F.J. Beron-Vera, J. Triñanes, N.F. Putman, R. Lumpkin, G.J. Goni, Clustering of marine-debris-and Sargassum-like drifters explained by inertial particle dynamics, Geophys. Res. Lett. 47 (2020), e2020GL089874.
[104] P. Miron, S. Medina, M.J. Olascoaga, F.J. Beron-Vera, Laboratory verification of a Maxey-Riley theory for inertial ocean dynamics, Phys. Fluids 32 (2020), 071703.
[105] O. Nesterov, Consideration of various aspects in a drift study of MH370 debris, Ocean Sci. 14 (2018).
[106] J. Rohrs, K. H. Christensen, L. R. Hole, G. Brostrom, M. Drivdal, S. Sundby, Observation-based evaluation of surface wave effects on currents and trajectory forecasts, Ocean Dyn. 62 (2012).
[107] F.J. Beron-Vera, P. Miron, A minimal Maxey-Riley model for the drift of Sargassum, J. Fluid Mech. 904 (2020), A8. References · Zbl 1460.86011
[108] G. Froyland, S. Lloyd, N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems, Physica D 239 (2010) 1527-1541. · Zbl 1193.37032
[109] K. Padberg-Gehle, C. Schneide, Network-based study of Lagrangian transport and mixing, Nonlin. Processes Geophys. 24 (2017) 661-671.
[110] C. Schneide, P. P. Vieweg, J. Schumacher, K. Padberg-Gehle, Evolutionary clustering of Lagrangian trajectories in turbulent Rayleigh-Bénard convection flows, Chaos 32 (2022) 013123. · Zbl 07867665
[111] C. Weiland, E. Steuwe, J. Fitschen, M. Hoffmann, M. Schlüter, K. Padberg-Gehle, A. von Kameke, Computational study of three-dimensional Lagrangian transport and mixing in a stirred tank reactor, Chemical Engineering Journal Advances 14 (2023) 100448.
[112] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 888-905.
[113] F. R. Bach, M. I. Jordan, Learning spectral clustering, with application to speech separation, J. Mach. Learn. Res.7 (2006) 1963-2001. · Zbl 1222.68138
[114] R. Banisch, P. Koltai, K. Padberg-Gehle, Network measures of mixing, Chaos 29 (2019) 063125. · Zbl 1416.37006
[115] C. Schneide, A. Pandey, K. Padberg-Gehle, J. Schumacher, Probing turbulent superstruc-tures in Rayleigh-Bénard convection by Lagrangian trajectory clusters, Phys. Rev. Fluids 3 (2018) 113501.
[116] C. Schneide, M. Stahn, A. Pandey, O. Junge, P. Koltai, K. Padberg-Gehle, J. Schumacher, Lagrangian coherent sets in turbulent Rayleigh-Bénard convection, Phys. Rev. E 100 (2019) 053103.
[117] P. P. Vieweg, C. Schneide, K. Padberg-Gehle, J. Schumacher, Lagrangian heat transport in turbulent three-dimensional convection, Phys. Rev. Fluids 6 (2021) L041501.
[118] Y. Chi, X. Song, D. Zhou, K. Hino, B. L. Tseng, Evolutionary spectral clustering by in-corporating temporal smoothness, in: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-07), New York, NY, USA, 2007, pp. 153-162.
[119] G. Froyland, C. P. Rock, K. Sakellariou, Sparse eigenbasis approximation: Multiple fea-ture extraction across spatiotemporal scales with application to coherent set identification, Commun. Nonlinear Sci. Numer. Simul. 77 (2019) 81-107. · Zbl 1541.62147
[120] P. P. Vieweg, A. Klünker, J. Schumacher, K. Padberg-Gehle, Lagrangian studies of coherent sets and heat transport in constant heat flux-driven turbulent Rayleigh-Bénard convection, under review, arXiv:2304.02984, 2023. References
[121] U. Frisch (1995), Turbulence: the legacy of AN Kolmogorov, Cambridge university press. · Zbl 0832.76001
[122] D. D. Holm (2015), Variational principles for stochastic fluid dynamics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471 (2176), 20140963. · Zbl 1371.35219
[123] E. Mémin (2014), Fluid flow dynamics under location uncertainty, Geophysical & Astro-physical Fluid Dynamics 108 (2), 119-146. · Zbl 1541.76026
[124] V. Resseguier, E. Hascoët & B. Chapron (2021), Random ocean swell-rays: a stochastic framework, Stochastic Transport in Upper Ocean Dynamics Annual Workshop. pp. 259-271, Springer, Cham.
[125] V. Resseguier, L. Li, G. Jouan, P. Dérian, E. Mémin & B. Chapron (2021), New trends in ensemble forecast strategy: uncertainty quantification for coarse-grid computational fluid dynamics, Archives of Computational Methods in Engineering 28 (1), 215-261.
[126] V. Resseguier, W. Pan & B. Fox-Kemper (2020), Data-driven versus self-similar parameteri-zations for stochastic advection by lie transport and location uncertainty,Nonlinear Processes in Geophysics 27 (2), 209-234. References
[127] Maxey, M. R., and Riley, J. J., Equation of motion for a small rigid sphere in a nonuniform flow, The Physics of Fluids, 26(4) (1983), 883-889. · Zbl 0538.76031
[128] Haller, G., and Sapsis, T., Where do inertial particles go in fluid flows?, Physica D: Non-linear Phenomena, 237(5) (2008), 573-583. · Zbl 1139.76055
[129] Beron-Vera, F. J., Olascoaga, M. J., and Lumpkin, R., Inertia-induced accumulation of flotsam in the subtropical gyres, Geophysical Research Letters, 43(23) (2016), 12-228. References
[130] P. Maity, P. Koltai, and J. Schumacher Large-scale flow in a cubic Rayleigh-Bénard cell: long-term turbulence statistics and Markovianity of macrostate transitions, Phil. Trans. R. Soc. A 380 (2022), 20210042.
[131] P. Maity, A. Bittracher, P. Koltai, and J. Schumacher Collective variables between large-scale states in turbulent convection, Phys. Rev. Research 5 (2023), in press. References
[132] J. Alcala and I. Timofeyev, Subgrid-scale parametrization of unresolved scales in forced Burgers equation using Generative Adversarial Networks (GAN), Theor. Comp. Fluid Dyn. 35 (2021), 875-894.
[133] M. Zacharuk, S. I. Dolaptchiev, U. Achatz, I. Timofeyev, Stochastic subgrid-scale param-eterization for one-dimensional shallow water dynamics using stochastic mode reduction, Q.J.R. Meteorol. Soc. 144(715) (2018), 1975-1990.
[134] S. I. Dolaptchiev, I. Timofeyev, U. Achatz, Subgrid-scale closure for the inviscid Burgers-Hopf equation, Comm. Math Sci. 11(3) (2013), 757-777. · Zbl 1286.76122
[135] S. I. Dolaptchiev, U. Achatz, and I. Timofeyev, Stochastic closure for local averages in the finite-difference discretization of the forced Burgers equation, Theor. Comput. Fluid Dyn. 27(3-4) (2013,) 297-317. Reporter: Anton Kutsenko
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.