×

Global dynamics for a two-species chemotaxis system with loop. (English) Zbl 1536.92021

Summary: In this paper, we are concerned with the two-species and two-stimuli chemotaxis system with loop in a bounded domain with smooth boundary. Under appropriate regularity assumptions of the initial data, we show that the system possesses a unique and global bounded classical solution. In addition, the asymptotic behavior of the solutions is discussed. Our results generalize and improve partial previously known ones.

MSC:

92C17 Cell movement (chemotaxis, etc.)
35K45 Initial value problems for second-order parabolic systems
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Bai, X.; Winkler, M., Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583, 2016 · Zbl 1345.35117 · doi:10.1512/iumj.2016.65.5776
[2] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763, 2015 · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[3] Black, T., Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discret. Contin. Dyn. Syst. Ser. B, 22, 4, 1253-1272, 2017 · Zbl 1360.35084
[4] Chaplain, M.; Stuart, A., A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10, 149-168, 1993 · Zbl 0783.92019 · doi:10.1093/imammb/10.3.149
[5] Ding, M.; Wang, W., Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production, Discret. Contin. Dyn. Syst. Ser. B, 24, 9, 4665-4684, 2019 · Zbl 1429.35039
[6] Enderling, H.; Anderson, A.; Chaplain, M.; Munro, A.; Vaidya, J., Mathematical modelling of radiotherapy strategies for early breast cancer, J. Theoret. Biol., 241, 158-171, 2006 · Zbl 1447.92195 · doi:10.1016/j.jtbi.2005.11.015
[7] Enderling, H.; Chaplain, M.; Anderson, A.; Vaidya, J., A mathematical model of breast cancer development, local treatment and recurrence, J. Theoret. Biol., 246, 245-259, 2007 · Zbl 1451.92091 · doi:10.1016/j.jtbi.2006.12.010
[8] Fujie, K.; Senba, T., Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differ. Equ., 263, 88-148, 2017 · Zbl 1364.35120 · doi:10.1016/j.jde.2017.02.031
[9] Herrero, M.; Velázquez, J., A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24, 633-683, 1997 · Zbl 0904.35037
[10] Hillen, T.; Painter, K., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 183-217, 2009 · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[11] Höfer, H.; Sherratt, J.; Maini, P., Cellular pattern formation during Dictyostelium aggregation, Phys. D, 85, 425-444, 1995 · Zbl 0888.92005 · doi:10.1016/0167-2789(95)00075-F
[12] Horstmann, D., From, until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein., 105, 2003, 103-165, 1970 · Zbl 1071.35001
[13] Horstmann, D.; Winkler, M., Boundedness versus blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107, 2005 · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[14] Isenbach, M., Chemotaxis, 2004, London: Imperial College Press, London · doi:10.1142/p303
[15] Keller, EF; Segel, LA, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415, 1970 · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[16] Kuútsdóttir, H.; Pálsson, E.; Keshet, LE, Mathematical model of macrophage-facilitated breast cancer cells invasion, J. Theoret. Biol., 357, 184-199, 2014 · Zbl 1412.92149 · doi:10.1016/j.jtbi.2014.04.031
[17] Lin, K.; Mu, C., Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source, Discret. Contin. Dyn. Syst. Ser. B, 22, 2233-2260, 2017 · Zbl 1366.35067
[18] Lin, K.; Xiang, T., On global solutions and blow-up for a short-ranged chemical signaling loop, J. Nonlinear Sci., 29, 551-591, 2019 · Zbl 1417.35066 · doi:10.1007/s00332-018-9494-6
[19] Lin, K.; Xiang, T., On boundedness, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop, Calc. Var. Part. Differ. Equ., 59, 108, 2020 · Zbl 1443.35060 · doi:10.1007/s00526-020-01777-7
[20] Liu, B.; Ren, G., Global existence and asymptotic behavior in a three-dimensional two-species chemotaxis-Stokes system with tensor-valued sensitivity, J. Korean Math. Soc., 57, 1, 215-247, 2020 · Zbl 1437.35079
[21] Mimura, M.; Tsujikawa, T., Aggregating pattern dynamics in a chemotaxis model including growth, Phys. A, 230, 449-543, 1996 · doi:10.1016/0378-4371(96)00051-9
[22] Murray, J., Mathematical Biology I: An Introduction, 2002, Berlin: Springer, Berlin · Zbl 1006.92001 · doi:10.1007/b98868
[23] Painter, KJ, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theoret. Biol., 481, 162-182, 2019 · Zbl 1422.92025 · doi:10.1016/j.jtbi.2018.06.019
[24] Painter, K.; Maini, P.; Othmer, H., A chemotactic model for the advance and retreat of the primitive streak in avian development, Bull. Math. Biol., 62, 501-525, 2000 · Zbl 1323.92036 · doi:10.1006/bulm.1999.0166
[25] Petter, G.; Byrne, H.; Mcelwain, D.; Norbury, J., A model of wound healing and angiogenesis in soft tissue, Math. Biosci., 136, 35-63, 2003 · Zbl 0860.92020 · doi:10.1016/0025-5564(96)00044-2
[26] Ren, G., Boundedness and stabilization in a two-species chemotaxis system with logistic source, Z. Angew. Math. Phys., 77, 177, 2020 · Zbl 1467.35325 · doi:10.1007/s00033-020-01410-9
[27] Ren, G.; Liu, B., Global boundedness and asymptotic behavior in a two-species chemotaxis-competition system with two signals, Nonlinear Anal, Real World Appl., 48, 288-325, 2019 · Zbl 1425.92034 · doi:10.1016/j.nonrwa.2019.01.017
[28] Ren, G.; Liu, B., Global existence of bounded solutions for a quasilinear chemotaxis system with logistic source, Nonlinear Anal. Real World Appl., 46, 545-582, 2019 · Zbl 1414.35243 · doi:10.1016/j.nonrwa.2018.09.020
[29] Ren, G.; Liu, B., Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source, Commun. Pure Appl. Anal., 19, 7, 3843-3883, 2020 · Zbl 1442.35038 · doi:10.3934/cpaa.2020170
[30] Ren, G.; Liu, B., Global dynamics for an attraction-repulsion chemotaxis model with logistic source, J. Differ. Equ., 268, 8, 4320-4373, 2020 · Zbl 1430.35115 · doi:10.1016/j.jde.2019.10.027
[31] Ren, G.; Liu, B., Global existence and asymptotic behavior in a two-species chemotaxis system with logistic source, J. Differ. Equ., 269, 2, 1484-1520, 2020 · Zbl 1442.35037 · doi:10.1016/j.jde.2020.01.008
[32] Ren, G.; Liu, B., Global boundedness and asymptotic behavior in a quasilinear attraction-repulsion chemotaxis model with nonlinear signal production and logistic-type source, Math. Models Methods Appl. Sci., 30, 13, 2619-2689, 2020 · Zbl 1466.35046 · doi:10.1142/S0218202520500517
[33] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 692-715, 2012 · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[34] Tao, Y.; Winkler, M., Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67, 1-23, 2016 · Zbl 1356.35054 · doi:10.1007/s00033-016-0732-1
[35] Wang, L.; Zhang, J.; Mu, C.; Hu, X., Boundedness and stabilization in a two-species chemotaxis system with two chemicals, Discret. Contin. Dyn. Syst. Ser. B, 25, 1, 191-221, 2020 · Zbl 1426.35133
[36] Wang, W., A quasilinear fully parabolic chemotaxis system with indirect signal production and logistic source, J. Math. Anal. Appl., 477, 488-522, 2019 · Zbl 1421.35031 · doi:10.1016/j.jmaa.2019.04.043
[37] Winkler, M., Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905, 2010 · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[38] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Part. Differ. Equ., 35, 1516-1537, 2010 · Zbl 1290.35139 · doi:10.1080/03605300903473426
[39] Winkler, M., Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384, 261-272, 2011 · Zbl 1241.35028 · doi:10.1016/j.jmaa.2011.05.057
[40] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767, 2013 · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[41] Winkler, M., Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211, 455-487, 2014 · Zbl 1293.35220 · doi:10.1007/s00205-013-0678-9
[42] Winkler, M., Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differ. Equ., 257, 1056-1077, 2014 · Zbl 1293.35048 · doi:10.1016/j.jde.2014.04.023
[43] Winkler, M., Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, J. Math. Pures Appl., 112, 118-169, 2018 · Zbl 1391.35065 · doi:10.1016/j.matpur.2017.11.002
[44] Winkler, M., A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: global weak solutions and asymptotic stabilization, J. Funct. Anal., 276, 5, 1339-1401, 2019 · Zbl 1408.35132 · doi:10.1016/j.jfa.2018.12.009
[45] Winkler, M., Attractiveness of constant states in logistic-type Keller-Segel systems involving subquadratic growth restrictions, Adv. Nonlinear Stud., 20, 4, 795-817, 2020 · Zbl 1465.35065 · doi:10.1515/ans-2020-2107
[46] Winkler, M., Small-mass solutions in the two-dimensional Keller-Segel system coupled to the Navier-Stokes equations, SIAM J. Math. Anal., 52, 2, 2041-2080, 2020 · Zbl 1441.35079 · doi:10.1137/19M1264199
[47] WyckoGff, JB; Wang, Y.; Lin, EY; Li, JF; Goswami, S.; Stanley, ER; Segall, JE; Pollard, JW; Condeelis, JS, Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors, Cancer Res., 67, 2649-2656, 2007 · doi:10.1158/0008-5472.CAN-06-1823
[48] Zeng, R., Optimal condition of solutions to a chemotaxis system with two species in a bounded domain, Appl. Math. Lett., 103, 106216, 2020 · Zbl 1440.35017 · doi:10.1016/j.aml.2020.106216
[49] Zhang, Q., Competitive exclusion for a two-species chemotaxis system with two chemicals, Appl. Math. Lett., 83, 27-32, 2018 · Zbl 1524.92023 · doi:10.1016/j.aml.2018.03.012
[50] Zhang, Q.; Liu, X.; Yang, X., Global existence and asymptotic behavior of solutions to a two-species chemotaxis system with two chemicals, J. Math. Phys., 58, 1-9, 2017 · Zbl 1387.92014 · doi:10.1063/1.5011725
[51] Zhang, W.; Niu, P.; Liu, S., Large time behavior in a chemotaxis model with logistic growth and indirect signal production, Nonlinear Anal Real World Appl., 50, 484-497, 2019 · Zbl 1435.35068 · doi:10.1016/j.nonrwa.2019.05.002
[52] Zheng, J., Boundedness in a two-species quasi-linear chemotaxis system with two chemicals, Topol. Methods Nonlinear Anal., 48, 1, 463-480, 2017 · Zbl 1377.35247
[53] Zheng, J., An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differ. Equ., 267, 4, 2385-2415, 2019 · Zbl 1472.35232 · doi:10.1016/j.jde.2019.03.013
[54] Zheng, J.; Ke, Y., Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in \(N\) dimensions, J. Differ. Equ., 266, 4, 1969-2018, 2019 · Zbl 1416.92031 · doi:10.1016/j.jde.2018.08.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.