×

A nonlinear elliptic PDE from atmospheric science: well-posedness and regularity at cloud edge. (English) Zbl 1536.49026

Summary: The precipitating quasi-geostrophic equations go beyond the (dry) quasi-geostrophic equations by incorporating the effects of moisture. This means that both precipitation and phase changes between a water-vapour phase (outside a cloud) and a water-vapour-plus-liquid phase (inside a cloud) are taken into account. In the dry case, provided that a Laplace equation is inverted, the quasi-geostrophic equations may be formulated as a nonlocal transport equation for a single scalar variable (the potential vorticity). In the case of the precipitating quasi-geostrophic equations, inverting the Laplacian is replaced by a more challenging adversary known as potential-vorticity-and-moisture inversion. The PDE to invert is nonlinear and piecewise elliptic with jumps in its coefficients across the cloud edge. However, its global ellipticity is a priori unclear due to the dependence of the phase boundary on the unknown itself. This is a free boundary problem where the location of the cloud edge is one of the unknowns. Here we present the first rigorous analysis of this PDE, obtaining existence, uniqueness, and regularity results. In particular the regularity results are nearly sharp. This analysis rests on the discovery of a variational formulation of the inversion. This novel formulation is used to answer a key question for applications: which quantities jump across the interface and which quantities remain continuous? Most notably we show that the gradient of the unknown pressure, or equivalently the streamfunction, is Hölder continuous across the cloud edge.

MSC:

49K40 Sensitivity, stability, well-posedness
49N60 Regularity of solutions in optimal control
35B65 Smoothness and regularity of solutions to PDEs
86A10 Meteorology and atmospheric physics
35J20 Variational methods for second-order elliptic equations
35Q86 PDEs in connection with geophysics
76U60 Geophysical flows

References:

[1] Bousquet, A.; Coti Zelati, M.; Temam, R., Phase transition models in atmospheric dynamics, Milan J. Math., 82, 1, 99-128, 2014 · Zbl 1319.35181 · doi:10.1007/s00032-014-0213-y
[2] Charney, JG, On the scale of atmospheric motions, Geofys. Publ. Norske Vid.-Akad. Oslo, 17, 2, 17, 1948
[3] Cao, Y.; Hamouda, M.; Temam, R.; Tribbia, J.; Wang, X., The equations of the multi-phase humid atmosphere expressed as a quasi variational inequality, Nonlinearity, 31, 10, 4692-4723, 2018 · Zbl 1395.35128 · doi:10.1088/1361-6544/aad525
[4] Cao, Y.; Jia, C.; Temam, R.; Tribbia, J., Mathematical analysis of a cloud resolving model including the ice microphysics, Discrete Contin. Dyn. Syst., 41, 1, 131-167, 2021 · Zbl 1462.35403 · doi:10.3934/dcds.2020219
[5] Chen, G.-Q., Shahgholian, H., Vazquez, J.-L.: Free boundary problems: the forefront of current and future developments. Trans. R. Soc. A 373 (2015)
[6] Cao, C.; Titi, ES, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math. (2), 166, 1, 245-267, 2007 · Zbl 1151.35074 · doi:10.4007/annals.2007.166.245
[7] Caffarelli, LA; Vasseur, AF, The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics, Discrete Contin. Dyn. Syst. Ser. S, 3, 3, 409-427, 2010 · Zbl 1210.76039
[8] Coti Zelati, M.; Frémond, M.; Temam, R.; Tribbia, J., The equations of the atmosphere with humidity and saturation, Phys. D, 264, 49-65, 2013 · Zbl 1286.86013 · doi:10.1016/j.physd.2013.08.007
[9] Coti Zelati, M.; Huang, A.; Kukavica, I.; Temam, R.; Ziane, M., The primitive equations of the atmosphere in presence of vapour saturation, Nonlinearity, 28, 3, 625-668, 2015 · Zbl 1308.35233 · doi:10.1088/0951-7715/28/3/625
[10] Coti Zelati, M.; Temam, R., The atmospheric equation of water vapor with saturation, Boll. Unione Mat. Italy (9), 5, 2, 309-336, 2012 · Zbl 1256.35174
[11] De Giorgi, E., Sulla differenziabilita e l’analiticita della estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3, 25-43, 1957 · Zbl 0084.31901
[12] Eckart, C., Hydrodynamics of Oceans and Atmospheres, 1960, New York, Oxford, London, Paris: Pergamon Press, New York, Oxford, London, Paris · Zbl 0204.24906
[13] Ertel, H., Ein neuer hydrodynamischer wirbelsatz, Meteor. Zeitschrift, 59, 277-281, 1942 · JFM 68.0588.01
[14] Edwards, TK; Smith, LM; Stechmann, SN, Atmospheric rivers and water fluxes in precipitating quasi-geostrophic turbulence, Q. J. R. Meteorol. Soc., 146, 729, 1960-1975, 2020 · doi:10.1002/qj.3777
[15] Edwards, TK; Smith, LM; Stechmann, SN, Spectra of atmospheric water in precipitating quasi-geostrophic turbulence, Geophys. Astrophys. Fluid Dyn., 114, 6, 715-741, 2020 · Zbl 1482.86026 · doi:10.1080/03091929.2019.1692205
[16] Folland, G.B.: Real analysis. Pure and Applied Mathematics (New York), 2nd edn. Modern techniques and their applications, A Wiley-Interscience Publication, Wiley, New York (1999) · Zbl 0924.28001
[17] Figalli, A., Shahgholian, H.: An overview of unconstrained free boundary problems. Trans. R. Soc. A 373 (2015) · Zbl 1353.35322
[18] Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, volume 11 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, second edition (2012) · Zbl 1262.35001
[19] Grabowski, WW, Toward cloud resolving modeling of large-scale tropical circulations: a simple cloud microphysics parametrisation, J. Atmos. Sci., 55, 3283-3298, 1998 · doi:10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2
[20] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001) (Reprint of the 1998 edition) · Zbl 1042.35002
[21] Hernandez-Duenas, G.; Majda, AJ; Smith, LM; Stechmann, SN, Minimal models for precipitating turbulent convection, J. Fluid Mech., 717, 576-611, 2013 · Zbl 1284.76199 · doi:10.1017/jfm.2012.597
[22] Hu, R.; Edwards, TK; Smith, LM; Stechmann, SN, Initial investigations of precipitating quasi-geostrophic turbulence with phase changes, Res. Math. Sci., 8, 1, 6-25, 2021 · Zbl 1457.65144 · doi:10.1007/s40687-020-00242-3
[23] Hittmeir, S.; Klein, R.; Li, J.; Titi, ES, Global well-posedness for passively transported nonlinear moisture dynamics with phase changes, Nonlinearity, 30, 10, 3676-3718, 2017 · Zbl 1379.35325 · doi:10.1088/1361-6544/aa82f1
[24] Hittmeir, S.; Klein, R.; Li, J.; Titi, ES, Global well-posedness for the primitive equations coupled to nonlinear moisture dynamics with phase changes, Nonlinearity, 33, 7, 3206-3236, 2020 · Zbl 1447.35267 · doi:10.1088/1361-6544/ab834f
[25] Han, Q., and Lin, F.: Elliptic partial differential equations, volume 1 of Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, 2nd edn. New York; American Mathematical Society, Providence (2011) · Zbl 1210.35031
[26] Hoskins, BJ; McIntyre, ME; Robertson, AW, On the use and significance of isentropic potential vorticity maps, Q. J. R. Meteorol. Soc., 111, 470, 877-946, 1985 · doi:10.1002/qj.49711147002
[27] Leoni, G.: A first course in Sobolev spaces, volume 181 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2017) · Zbl 1382.46001
[28] Lian, R., Ma, J.: Existence of a strong solution to moist atmospheric equations with the effects of topography. Bound. Value Probl. pages Paper No. 103, 34 (2020) · Zbl 1499.76085
[29] Majda, A.: Introduction to PDEs and waves for the atmosphere and ocean, volume 9 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003) · Zbl 1278.76004
[30] Majda, AJ; Klein, R., Systematic multiscale models for deep convection on mesoscales, Theor. Comput. Fluid Dyn., 20, 525-551, 2006 · doi:10.1007/s00162-006-0027-9
[31] Marsico, DH; Smith, LM; Stechmann, SN, Energy decompositions for moist boussinesq and anelastic equations with phase changes, J. Atmos. Sci., 76, 11, 3569-3587, 2019 · doi:10.1175/JAS-D-19-0080.1
[32] Nesterov, Y.: Introductory lectures on convex optimization, volume 87 of Applied Optimization. Kluwer Academic Publishers, Boston. A basic course (2004) · Zbl 1086.90045
[33] Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of free boundaries in obstacle-type problems. Graduate Studies in Mathematics, vol. 136. American Mathematical Society, Providence (2012) · Zbl 1254.35001
[34] Smith, LM; Stechmann, SN, Precipitating quasigeostrophic equations and potential vorticity inversion with phase changes, J. Atmos. Sci., 74, 10, 3285-3303, 2017 · doi:10.1175/JAS-D-17-0023.1
[35] Tan, S., Liu, W.: The strong solutions to the primitive equations coupled with multi-phase moisture atmosphere. Phys. D, 440:Paper No. 133442, 18 (2022) · Zbl 1496.86015
[36] Temam, R.; Wu, KJ, Formulation of the equations of the humid atmosphere in the context of variational inequalities, J. Funct. Anal., 269, 7, 2187-2221, 2015 · Zbl 1321.35175 · doi:10.1016/j.jfa.2015.02.010
[37] Temam, R.; Wang, X.; Bociu, L.; Désidéri, J-A; Habbal, A., Approximation of the equations of the humid atmosphere with saturation, System Modeling and Optimization, 21-42, 2016, Cham: Springer, Cham · doi:10.1007/978-3-319-55795-3_2
[38] Vallis, GK, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2017, Cambridge: Cambridge University Press, Cambridge · Zbl 1374.86002 · doi:10.1017/9781107588417
[39] Vasseur, A.F.: The De Giorgi method for elliptic and parabolic equations and some applications. In: Lectures on the Analysis of Nonlinear Partial Differential Equations. Part 4, volume 4 of Morningside Lect. Math., pp. 195-222. Int. Press, Somerville (2016) · Zbl 1353.35096
[40] Wetzel, AN; Smith, LM; Stechmann, SN, Moisture transport due to baroclinic waves: linear analysis of precipitating quasi-geostrophic dynamics, Math. Clim. Weather Forecast., 3, 1, 28-50, 2017 · Zbl 1504.86019
[41] Wetzel, AN; Smith, LM; Stechmann, SN, Discontinuous fronts as exact solutions to precipitating quasi-geostrophic equations, SIAM J. Appl. Math., 79, 4, 1341-1366, 2019 · Zbl 1421.35370 · doi:10.1137/18M119478X
[42] Wetzel, AN; Smith, LM; Stechmann, SN; Martin, JE; Zhang, Y., Potential vorticity and balanced and unbalanced moisture, J. Atmos. Sci., 77, 6, 1913-1931, 2020 · doi:10.1175/JAS-D-19-0311.1
[43] Wetzel, AN; Smith, LM; Stechmann, SN; Martin, JE, Balanced and unbalanced components of moist atmospheric flows with phase changes, Chin. Ann. Math. Ser. B, 40, 6, 1005-1038, 2019 · Zbl 1428.86016 · doi:10.1007/s11401-019-0170-4
[44] Zhang, Y.; Smith, LM; Stechmann, SN, Fast-wave averaging with phase changes: asymptotics and application to moist atmospheric dynamics, J. Nonlinear Sci., 31, 2, 38-46, 2021 · Zbl 1468.76075 · doi:10.1007/s00332-021-09697-2
[45] Zhang, Y., Smith, L.M., Stechmann, S.N.: Convergence to precipitating quasi-geostrophic equations with phase changes: asymptotics and numerical assessment. Philos. Trans. Roy. Soc. A, 380(2226):Paper No. 20210030, 19 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.