×

Quantum hooks and mirror symmetry for flag varieties. (English) Zbl 1536.14029

Summary: Given a flag variety \(\mathrm{Fl}(n;r_1,\dots,r_\rho)\), there is natural ring morphism from the symmetric polynomial ring in \(r_1\) variables to the quantum cohomology of the flag variety. In this paper, we show that for a large class of partitions \(\lambda\), the image of \(s_\lambda\) under the ring homomorphism is a Schubert class which is described by partitioning \(\lambda\) into a quantum hook (or \(q\)-hook) and a tuple of smaller partitions. We use this result to show that the Plücker coordinate mirror of the flag variety describes quantum cohomology relations. This gives new insight into the structure of this superpotential, and the relation between superpotentials of flag varieties and those of Grassmannians (where the superpotential was introduced by B. R. Marsh and K. Rietsch [Adv. Math. 366, Article ID 107027, 131 p. (2020; Zbl 1453.14104)]).

MSC:

14J33 Mirror symmetry (algebro-geometric aspects)
14M15 Grassmannians, Schubert varieties, flag manifolds

Citations:

Zbl 1453.14104

References:

[1] Batyrev, VV; Ciocan-Fontanine, I.; Kim, B.; van Straten, D., Mirror symmetry and toric degenerations of partial flag manifolds, Acta Math., 184, 1, 1-39 (2000) · Zbl 1022.14014 · doi:10.1007/BF02392780
[2] Bertram, A.; Ciocan-Fontanine, I.; Fulton, W., Quantum multiplication of Schur polynomials, J. Algebra, 219, 2, 728-746 (1999) · Zbl 0936.05086 · doi:10.1006/jabr.1999.7960
[3] Billey, SC; Jockusch, W.; Stanley, RP, Some combinatorial properties of Schubert polynomials, J. Algebr. Combin., 2, 4, 345-374 (1993) · Zbl 0790.05093 · doi:10.1023/A:1022419800503
[4] Chen, L.; Gibney, A.; Heller, L.; Kalashnikov, E.; Larson, H.; Xu, W., On an equivalence of divisors on \(\overline{\text{M}}_{0, n}\) from Gromov-Witten theory and conformal blocks, Transform. Groups, 20, 20 (2022)
[5] Ciocan-Fontanine, I., On quantum cohomology rings of partial flag varieties, Duke Math. J., 98, 3, 485-524 (1999) · Zbl 0969.14039 · doi:10.1215/S0012-7094-99-09815-0
[6] Coates, T.; Corti, A.; Galkin, S.; Golyshev, V.; Kasprzyk, A., Mirror Symmetry and Fano Manifolds. European Congress of Mathematics, 285-300 (2013), Zürich: European Mathematical Society, Zürich · Zbl 1364.14032
[7] Eguchi, T.; Hori, K.; Xiong, C., Gravitational quantum cohomology, Int. J. Mod. Phys. A, 12, 1743-1782 (1997) · Zbl 1072.32500 · doi:10.1142/S0217751X97001146
[8] Fomin, S.; Gelfand, S.; Postnikov, A., Quantum Schubert polynomials, J. Am. Math. Soc, 10, 565-596 (1997) · Zbl 0912.14018 · doi:10.1090/S0894-0347-97-00237-3
[9] Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz (1995). In: Proceedings of Symposia in Pure Mathematics, vol. 62. American Mathematical Society, Providence, pp. 45-96 (1997) · Zbl 0898.14018
[10] Givental, A.: A mirror theorem for toric complete intersections, topological field theory, primitive forms and related topics (Kyoto, 1996). Progress in Mathematics, vol. 160. Birkhäuser, Boston, pp. 141-175 (1998) · Zbl 0936.14031
[11] Gu, W., Kalashnikov, E.: A rim-hook rule for quiver flag varieties, p. 9 (2020). arXiv:2009.02810
[12] Hori, K., Vafa, C.: Mirror symmetry (2000). arXiv:hep-th/0002222 · Zbl 1044.14018
[13] Kalashnikov, E., A Plücker coordinate mirror for type A flag varieties, Bull. Lond. Math. Soc., 54, 4, 1308-1325 (2022) · Zbl 1520.14074 · doi:10.1112/blms.12630
[14] Kim, B., On equivariant quantum cohomology, Int. Math. Res. Not., 1996, 17, 841-851 (1996) · Zbl 0881.55007 · doi:10.1155/S1073792896000517
[15] Knutson, A.; Miller, E.; Yong, A., Gröbner geometry of vertex decompositions and of flagged tableaux, J. Reine Angew. Math., 630, 1-31 (2009) · Zbl 1169.14033 · doi:10.1515/CRELLE.2009.033
[16] Kontsevich, M.: Enumeration of rational curves via torus actions, the moduli space of curves (Texel Island, 1994). Progress in Mathematics, vol. 129. Birkhäuser, Boston, pp. 335-368 (1995) · Zbl 0885.14028
[17] Lascoux, A.; Schützenberger, M-P, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., 294, 13, 447-450 (1982) · Zbl 0495.14031
[18] Lian, B.; Liu, K.; Yau, ST, Mirror principle I, Asian J. Math., 1, 4, 729-763 (1997) · Zbl 0953.14026 · doi:10.4310/AJM.1997.v1.n4.a5
[19] Marsh, RJ; Rietsch, K., The B-model connection and mirror symmetry for Grassmannians, Adv. Math., 366 (2020) · Zbl 1453.14104 · doi:10.1016/j.aim.2020.107027
[20] Rietsch, K.; Williams, L., Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Math. J., 168, 18, 3437-3527 (2019) · Zbl 1439.14142 · doi:10.1215/00127094-2019-0028
[21] Rietsch, K., A mirror symmetric construction of qHT(G/P)(q), Adv. Math., 217, 6, 2401-2442 (2008) · Zbl 1222.14107 · doi:10.1016/j.aim.2007.08.010
[22] Scott, JS, Grassmannians and cluster algebras, Proc. Lond. Math. Soc., 92, 2, 345-380 (2006) · Zbl 1088.22009 · doi:10.1112/S0024611505015571
[23] Spacek, P., Laurent polynomial Landau-Ginzburg models for cominiscule homogeneous spaces, Transform. Groups, 20, 20 (2021)
[24] Spacek, P., Wang, C.: Towards Landau-Ginzburg models for cominuscule spaces via the exceptional cominuscule family. arXiv:2204.03548 (2022) · Zbl 1527.14086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.