×

Applications of the Klein-Gordon equation in the Feshbach-Villars representation in the non-inertial cosmic string space-time. (English) Zbl 1535.81108

Summary: We study the relativistic quantum motion of a spinless particle using the Feshbach-Villars (FV) formalism in the spinning cosmic string spacetime. The equations of motion are derived using the first-order FV formulation of the Klein-Gordon (KG) equation. We apply the equation of motion (a) to study the motion of the particle confined to a rigid-wall potential, (b) motion in the presence of a Coulomb-type potential, and (c) particle interacting with the Feshbach-Villars oscillator (FVO). The energy levels and wave functions are obtained for the three cases. Our study focused on the impact of rotation and curvature on the energy levels of the particle.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
83F05 Relativistic cosmology
83E30 String and superstring theories in gravitational theory
06D22 Frames, locales
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
57R67 Surgery obstructions, Wall groups
78A35 Motion of charged particles

References:

[1] Einstein, A., Ann. Physics, 769 (1916)
[2] Abbott, B. P., Phys. Rev. Lett. (2016)
[3] Akiyama, K., Astrophys. J. Lett., L1 (2019)
[4] Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals (1965), Courier Corporation · Zbl 0176.54902
[5] Schwartz, M. D., Quantum Field Theory and the Standard Model (2013), Cambridge University Press
[6] Ashtekar, A.; Stachel, J. J., Conceptual Problems of Quantum Gravity (1991), Birkhäuser
[7] Smolin, L., The trouble with physics: The rise of string theory, the fall of a science, and what comes next (2007)
[8] Birrell, N. D.; Davies, P.
[9] Parker, L.; Toms, D. J., Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity (2009), Cambridge University Press · Zbl 1180.81001
[10] Hawking, S. W., Comm. Math. Phys., 199 (1975)
[11] Unruh, W. G.; Wald, R. M., Phys. Rev. D, 942 (1982)
[12] Sewell, G. L., Ann. Phys., 201 (1982)
[13] Kibble, T. W.B., J. Phys. A, 1387 (1976) · Zbl 0333.57005
[14] Zel’dovich, Y. B., Mon. Not. R. Astron. Soc., 663 (1980)
[15] Vilenkin, A., Phys. Rep., 263 (1985)
[16] Kibble, T. W.B., Phys. Rep., 183 (1980)
[17] Vilenkin, A., Phys. Lett. B, 177 (1983)
[18] Vilenkin, A.; Shellard, E. P.S., Cosmic Strings and Other Topological Defects (1985), Cambridge University Press · Zbl 0978.83052
[19] Moshinsky, M.; Smirnov, Y. F., The Harmonic Oscillator in Modern Physics (1996), Editions Harwood Academic Publishers: Editions Harwood Academic Publishers Amsterdam · Zbl 0865.00015
[20] Itô, D.; Mori, K.; Carriere, E. W., Il Nuovo Cimento A, 1119 (1967)
[21] Moshinsky, M.; Szczepaniak, A., J. Phys. A, Math. Gen., L817 (1989)
[22] Cunha, Márcio M.; Dias, Henrique S.; Silva, Edilberto O., Phys. Rev. D (2020)
[23] Lima, Daniel F.; Andrade, Fabiano M.; Castro, Luis B.; Filgueiras, Cleverson; Silva, Edilberto O., Eur. Phys. J. C, 596 (2019)
[24] Andrade, Fabiano M.; Silva, Edilberto O., Europhys. Lett., 30003 (2014)
[25] Andrade, Fabiano M.; Silva, Edilberto O., Phys. Lett. B, 44-47 (2014) · Zbl 1360.81198
[26] Andrade, F. M.; Silva, E. O.; Jr., M. M. Ferreira; Rodrigues, E. C., Phys. Lett. B, 327-330 (2014) · Zbl 1368.81100
[27] Boumali, A., EJTP, 121-130 (2015)
[28] Boumali, A.; chetouani, L., Phys. Lett. A, 261-268 (2005) · Zbl 1195.81072
[29] Dvoeglazov, V. V., Il Nuovo Cimento A, 1785 (1994)
[30] Carvalho, J.; de M. Carvalho, A. M.; Cavalcante, E.; Furtado, C., Eur. Phys. J. C, 1 (2016)
[31] dos Santos, L. C.; de Camargo Barros, C., Eur. Phys. J. C, 1 (2017)
[32] Vitória, R. L.L.; Bakke, K., Eur. Phys. J. C, 1 (2018)
[33] Cuzinatto, R. R.; de Montigny, M.; Pompeia, P., Class. Quan. Grav. (2022)
[34] Ahmed, F., Europhys. Lett., 30002 (2020)
[35] Foldy, L. L., Phys. Rev., 568 (1956)
[36] Foldy, L. L.; Wouthuysen, S. A., Phys. Rev., 29 (1950)
[37] Feshbach, H.; Villars, F. M.H., Rev. Mod. Phys., 24 (1958)
[38] Boumali, A.; Aounallah, H., Adv. High Energy Phys., 2018 (2018)
[39] Aounallah, H.; Boumali, A., Phys. Part. Nuclei Lett., 195-205 (2019)
[40] Boumali, A.; Aounallah, H., Rev. Mexicana Fís., 192-208 (2020)
[41] Robson, B. A.; Staudte, D. S., J. Phys. A: Math. Gen., 157 (1996)
[42] Staudte, D. S., J. Phys. A, 169 (1996)
[43] Merad, M.; Chetouani, L.; Bounames, A., Phys. Lett. A, 225 (2000)
[44] Bounames, A.; Chetouani, L., Phys. Lett. A, 139 (2001)
[45] Haouat, S.; Chetouani, L., Eur. Phys. J. C, 297 (2005)
[46] Brown, N.; Papp, Z.; Woodhouse, R. M., Few-Body Syst., 103 (2015)
[47] Motamedi, B.; Shannon, T.; Papp, Z., Few-Body Syst., 1-7 (2019)
[48] Klein, O., Z. Phys., 895 (1926)
[49] Gordon, W., Z. Phys., 117 (1926)
[50] Greiner, W., Relativistic Quantum Mechanics. Wave Equations (2000) · Zbl 0998.81503
[51] Gross, F. L., Relativistic Quantum Mechanics and Field Theory (1993), John Wiley and Sons
[52] Silenko, A. J., Phys. Rev. A (2008)
[53] Khounfais, K.; Boudjedaa, T.; Chetouani, L., Czech. J. Phys., 697-710 (2004)
[54] Guettou, B.; Chetouani, L., Phys. Scr., 12-18 (2006) · Zbl 1117.81140
[55] Brown, Natalie. (2015), University of Missouri: University of Missouri Columbia, (B.S. Mathematics and Physics)
[56] WoodhouseL, Robert M. (2012), Arizona State University, (Ph.D. Biology)
[57] Vallejo, Antonio Garcia (2020), California State University: California State University San Bernardino, (B.S. 2018)
[58] Chargui, Y.; Dhahbi, A.; Karam, A. R., Heliyon (2022)
[59] Mirza, B.; Mohadesi, M., Commun. Theor. Phys., 664 (2004)
[60] Gott, I.; J. R., Astrophys. J., 422 (1985)
[61] Bouzenada, A.; Boumali, A., Ann. Phys. (2023)
[62] Gal’tsov; Letelier, Phys. Rev. D, 4273 (1993)
[63] Bouzenada, A.; Boumali, A.; Vitoria, R. L.L.; Ahmed, F.; Al-Raeei, M., Nuclear Phys. B (2023)
[64] Bouzenada, A.; Boumali, A.; Al-Raeei, M. (2023), preprint arXiv:2302.13805
[65] Boumali, A.; Messai, N., Can. J. Phys., 1460 (2014)
[66] Vilenkin, A., Phys. Rep., 263 (1985)
[67] Bakke, K., Eur. Phys. J. Plus, 82 (2012)
[68] Bakke, K.; Furtado, C., Eur. Phys. J. C, 531 (2010)
[69] Bakke, K.; Furtado, C., Phys. Rev. D (2009)
[70] Bakke, K.; Furtado, C., Phys. Rev. D (2010)
[71] Kibble, T. W.B., J. Phys. A, 1387 (1976) · Zbl 0333.57005
[72] Mazur, P. O., Phys. Rev. Lett., 929 (1986)
[73] Bakke, K., Modern Phys. Lett. B, 3 (2013)
[74] Silenko, A. J., Theoret. Math. Phys., 1308 (2008)
[75] Mostafazadeh, A., J. Phys. A, 7829 (1998)
[76] Casana, R.; Pazetti, M.; Pimentel, B. M.; Valverde, J. S., Il Nuovo Cimento, 485-498 (2009)
[77] Silenko, A. J., Phys. Rev. D (2013)
[78] Gonzales, J.; Guinea, F.; Vozmediano, M. A.H., Phys. Rev. Lett., 172 (1992); Hasan, M. A.; Kane, C. L., Rev. Mod. Phys., 3045 (2010)
[79] Bastos, Luis B., Eur. Phys. J. C, 61 (2016)
[80] Santos, L. C.N.; Barros Jr., C. C., Eur. Phys. J. C, 186 (2017)
[81] Neto, F. A.C.; da Silva, F. M.; Santos, L. C.N.; Bastos, Luis B., Eur. Phys. J. Plus, 25 (2020)
[82] Ahmed, F., Chinese J. Phys., 587-595 (2020)
[83] Bouzenada, A.; Boumali, A.; Serdouk, F., Theoret. Math. Phys., 1055-1067 (2023) · Zbl 1530.81061
[84] Petiau, Acad. Roy. de Belg. Classe Sci. Mem in 8o, 2 (1936)
[85] Kemmer, N., Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 127 (1938)
[86] Duffin, R. J., Phys. Rev., 1114, N (1938)
[87] Kemmer, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 91 (1939)
[88] Dvornikov, Maxim, J. Cosmol. Astropart. Phys., 037 (2015)
[89] Paschalidis, Vasileios; Stergioulas, Nikolaos, Living Rev. Relativ., 7 (2017)
[90] (Undergraduate Lecture Notes in Physics) Jorge Ernesto Horvath - High-Energy Astrophysics - A Primer (2022), Springer
[91] Torres-Silva, H., Revista Chilena de Ingeniería, 72-77 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.