×

Can quantum nonlocality be connected to extra dimensions? (English) Zbl 1534.81172

Summary: Quantum nonlocality, as described by Einstein-Podolsky-Rosen (EPR) paradox, represents one of the mysteries at the very foundations of quantum mechanics. Here, we suggest to investigate if it can be understood by considering extra dimensions.

MSC:

81U90 Particle decays
81P40 Quantum coherence, entanglement, quantum correlations
81P05 General and philosophical questions in quantum theory
11G09 Drinfel’d modules; higher-dimensional motives, etc.

References:

[1] Bell, J. S., Physics1 (1965) 195.
[2] Genovese, M. and Gramegna, M., Appl. Sci.9 (2019) 5406.
[3] Freedman, S. and Clauser, J., Phys. Rev. Lett.28 (1972) 938.
[4] Aspect, A.et al., Phys. Rev. Lett.47 (1981) 460.
[5] Hensen, B.et al., Nature (London)526 (2015) 682.
[6] Shalm, L. K.et al., Phys. Rev. Lett.115 (2015) 250402.
[7] Giustina, M.et al., Phys. Rev. Lett.115 (2015) 250401.
[8] Genovese, M., Phys. Rep.413 (2005) 319.
[9] Carmi, A.et al., New J. Phys.21 (2019) 073032.
[10] Gisin, N.et al., Nat. Commun.11 (2020) 237.
[11] Grangier, P., Entropy23(12) (2021) 1660.
[12] Pirandola, S.et al., Adv. Opt. Photonics12 (2020) 1012.
[13] Giovannetti, V., Lloyd, S. and Maccone, L., Nat. Photonics5 (2011) 222.
[14] Degen, C. L.et al., Rev. Mod. Phys.89 (2017) 035002.
[15] Genovese, M., J. Opt.18 (2016) 073002.
[16] Genovese, M., AVS Quantum Sci.3 (2021) 044702.
[17] Cohen, E. and Tamir, B., Eur. Phys. J. Spec. Top.224(1) (2015) 89.
[18] Ghirardi, G. C., Rimini, A. and Weber, T., Lett. Nuovo Cimento27 (1980) 293, https://doi.org/10.1007/BF02817189.
[19] Hyomony, A., Natural Science and Mathaphysics (Cambridge University Press, Cambridge, UK, 1993).
[20] Maudlin, T., Space-time in the quantum world, in Bohmian Mechanics and Quantum Theory: An Appraisal, eds. Cushing, J. T., Fine, A. and Goldstein, S. (Springer, Berlin, 1996), pp. 285-307.
[21] Maccone, L., Found. Phys.49 (2019) 1, https://doi.org/10.1007/s10701-019-00311-w.
[22] Ahn, D.et al., Phys. Rev. A88 (2013) 022332, https://doi.org/10.1103/PhysRevA.88.022332.
[23] Aharonov, Y., Cohen, E. and Elitzur, A. C., Ann. Phys.355 (2015) 258, https://doi.org/10.1016/j.aop.2015.02.020.
[24] Lloyd, S.et al., Phys. Rev. Lett.106 (2011) 040403.
[25] Oreshkov, O., Costa, F. and Brukner, C., Nat. Commun.3 (2012) 1092, https://doi.org/10.1038/ncomms2076.
[26] Wootters, W. K., Int. J. Theor. Phys.23 (1984) 701, https://doi.org/10.1007/BF02214098.
[27] Genovese, M., Adv. Sci. Lett.2 (2009) 303, https://doi.org/10.1166/asl.2009.1070.
[28] Myrvold, W. C., Stud. Hist. Philos. Sci. B33 (2002) 435. · Zbl 1222.83020
[29] G. M. D’Ariano, arXiv:2102.01438.
[30] Maldacena, J. and Susskind, L., Fortschr. Phys.61 (2013) 781. · Zbl 1338.83057
[31] ’t Hooft, G., Class. Quantum Grav.16 (1999) 3263. · Zbl 0937.83015
[32] Perinotti, P., Quantum4 (2020) 294.
[33] C. Jones, G. Gasbarri and A. Bassi, arXiv:1907.02370.
[34] C. Jones, G. Gasbarri and A. Bassi, arXiv:201202627.
[35] Czachor, M., Found. Phys. Lett.4 (1919) 351.
[36] Gisin, N., Helv. Phys. Acta82 (1989) 363.
[37] Polchinski, J., Phys. Rev. Lett.66 (1991) 397. · Zbl 0968.81504
[38] X. Oriols and J. Mompart, arXiv:1206.1084.
[39] Duerr, D.et al., Phys. Rev. A60 (1999) 2729.
[40] Brida, G.et al., Opt. Express16 (2008) 11750.
[41] Brida, G.et al., Phys. Lett. A299 (2002) 121.
[42] Brida, G.et al., Phys. Rev. A68 (2003) 033803.
[43] C. Rovelli, arXiv:gr-qc/9803024.
[44] M. Ghodrati, arXiv:2209.04548.
[45] L. Diosi, arXiv:0902.1464.
[46] S. Weinberg, arXiv:1109.6463.
[47] Adler, S. and Brun, T., J. Phys. A34 (2001) 4797.
[48] Bassi, A. and Ghirardi, G., Phys. Rev. A65 (2002) 042114.
[49] Bassi, A. and Adler, S. L., J. Phys. A, Math. Theor.41 (2008) 395308. · Zbl 1148.81004
[50] L. Mertens et al., arXiv:2208.11584.
[51] Tumulka, R., AIP Conf. Proc.844 (2006) 340.
[52] G. ’t Hooft, arXiv:2103.04335.
[53] Peres, A., Phys. Rev. A61 (2000) 022116.
[54] S. Donadi, L. Ferialdi and A. Bassi, arXiv:2209.09697.
[55] Bassi, A.et al., Rev. Mod. Phys.85 (2013) 471.
[56] Bassi, A., Present and future precision tests of spontaneous wave function collapse models, in Optical and Quantum Sensing and Precision Metrology, Vol. 11700 (SPIE, 2021), p. 117000S.
[57] Donadi, S.et al., Nat. Phys.17 (2021) 74.
[58] Genovese, M., Adv. Sci. Lett.3 (2010) 249, https://doi.org/10.1166/asl.2010.1133.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.