×

Input-output finite-time guaranteed cost control for time-varying systems based on an aperiodic adaptive event-triggered mechanism. (English) Zbl 1533.93644

Summary: This paper is concerned with the problem of input-output finite-time guaranteed cost control for a kind of time-varying systems (TVSs). To reduce the transmission burden, an aperiodic-sampling-based event-triggered mechanism is proposed with an adaptive law. And a time-varying Lyapunov functional involving some time-dependent piecewise matrices is designed. Input-output finite-time stability (IO-FTS) conditions are presented for the closed-loop system. By resorting to properties of the matrix polynomial, input-output finite-time stabilization criterions are further derived by recursive linear matrix inequalities. And the sampled-data static output feedback controller can be obtained. In addition, the corresponding optimization problem about minimum values of both the guaranteed cost bound and system output norm are established. Finally, a spring-mass-damper system illustrates the effectiveness and superiority.

MSC:

93D25 Input-output approaches in control theory
93D40 Finite-time stability
93C40 Adaptive control/observation systems
93C65 Discrete event control/observation systems
93C57 Sampled-data control/observation systems
93B52 Feedback control
Full Text: DOI

References:

[1] Anderson, B. D O.; Ilchmann, A.; Wirth, F. R., Stabilizability of linear time-varying systems, Systems & Control Letters, 62, 9, 747-755 (2013) · Zbl 1280.93068 · doi:10.1016/j.sysconle.2013.05.003
[2] Zhou, B., On asymptotic stability of linear time-varying systems, Automatica, 68, 266-276 (2016) · Zbl 1334.93152 · doi:10.1016/j.automatica.2015.12.030
[3] Sun, H. Y.; Sun, J.; Chen, J., Stability of linear systems with sawtooth input delay and predictor-based controller, Automatica, 117, 108949 (2020) · Zbl 1441.93251 · doi:10.1016/j.automatica.2020.108949
[4] Zhang, W. B.; Han, Q. L.; Tang, Y., Sampled-data control for a class of linear time-varying systems, Automatica, 103, 126-134 (2019) · Zbl 1415.93169 · doi:10.1016/j.automatica.2019.01.027
[5] Wu, X.; Tang, Y.; Cao, J., Input-to-state stability of time-varying switched systems with time delays, IEEE Transactions on Automatic Control, 64, 6, 2537-2544 (2019) · Zbl 1482.93532 · doi:10.1109/TAC.2018.2867158
[6] Phat, V. N., New stabilization criteria for linear time-varying systems with state delay and norm-bounded uncertainties, IEEE Transactions on Automatic Control, 47, 12, 2095-2098 (2003) · Zbl 1364.93663 · doi:10.1109/TAC.2002.805669
[7] Phat, V. N.; Hien, L. V., An application of Razumikhin theorem to exponential stability for linear non-autonomous systems with time-varying delay, Applied Mathematics Letters, 22, 9, 1412-1417 (2009) · Zbl 1173.34332 · doi:10.1016/j.aml.2009.01.053
[8] San Filippo, F. A.; Dorato, P., Short-time parameter optimization with flight control application, Automatica, 10, 4, 425-430 (1974) · doi:10.1016/0005-1098(74)90069-7
[9] Guo, Y.; Yao, Y.; Wang, S., Finite-time control with H_∞ constraints of linear time-invariant and time-varying systems, Journal of Control Theory and Applications, 11, 2, 165-172 (2013) · doi:10.1007/s11768-013-1167-2
[10] Dorato P, Short time stability in linear time-varying systems, Proceedings of the IRE International Convention Record, 1961, 83-87.
[11] Amato, F.; Ariola, M.; Dorato, P., Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37, 9, 1459-1463 (2001) · Zbl 0983.93060 · doi:10.1016/S0005-1098(01)00087-5
[12] Liu, Y.; Zhang, Y.; Ma, Y., Finite-time H_∞ sampled-data reliable control for a class of markovian jump systems with randomly occurring uncertainty via T-S fuzzy model, Journal of Systems Science and Complexity, 35, 3, 860-887 (2022) · Zbl 1495.93074 · doi:10.1007/s11424-021-0220-3
[13] Thuan, M. V., Robust finite-time guaranteed cost control for positive systems with multiple time delays, Journal of Systems Science and Complexity, 32, 2, 496-509 (2019) · Zbl 1411.93060 · doi:10.1007/s11424-018-7064-5
[14] Amato, F.; Ambrosino, R.; Cosentino, C., Input-output finite time stabilization of linear systems, Automatica, 46, 9, 1558-1562 (2010) · Zbl 1202.93142 · doi:10.1016/j.automatica.2010.06.005
[15] Amato, F.; Tommasi, G. D.; Pironti, A., Input-output finite-time stabilization of impulsive linear systems: Necessary and sufficient conditions, Nonlinear Analysis: Hybrid Systems, 19, 93-106 (2016) · Zbl 1329.93122
[16] Chen, M.; Sun, J., Input-output finite-time reliable static output control of time-varying system with input delay, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 2, 1334-1344 (2021) · doi:10.1109/TSMC.2019.2895920
[17] Chen, M.; Sun, J.; Karimi, H. R., Input-output finite-time generalized dissipative filter of discrete time-varying systems with quantization and adaptive event-triggered mechanism, IEEE Transactions on Cybernetics, 50, 12, 5061-5073 (2020) · doi:10.1109/TCYB.2019.2932677
[18] Zhao, Q. T.; Sun, J.; Bai, Y. Q., Dynamic event-triggered control for nonlinear systems: A small-gain approach, Journal of Systems Science and Complexity, 33, 4, 930-943 (2020) · Zbl 1455.93121 · doi:10.1007/s11424-020-9210-0
[19] Zhang, H.; Han, J.; Wang, Y., H_∞ consensus for linear heterogeneous multiagent systems based on event-triggered output feedback control scheme, IEEE Transactions on Cybernetics, 49, 6, 2268-2279 (2019) · doi:10.1109/TCYB.2018.2823362
[20] Peng, C.; Zhang, J.; Yan, H., Adaptive event-triggering H_∞ load frequency control for network-based power systems, IEEE Transactions on Industrial Electronics, 65, 2, 1685-1694 (2018) · doi:10.1109/TIE.2017.2726965
[21] Gu, Z.; Yue, D.; Tian, E., On designing of an adaptive event-triggered communication scheme for nonlinear networked interconnected control systems, Information Sciences, 422, 257-270 (2018) · doi:10.1016/j.ins.2017.09.005
[22] Chen, G.; Fan, C.; Sun, J., Mean square exponential stability analysis for Itô stochastic systems with aperiodic sampling and multiple time-delays, IEEE Transactions on Automatic Control, 67, 5, 2473-2480 (2022) · Zbl 1537.93601 · doi:10.1109/TAC.2021.3074848
[23] Chen, G.; Fan, C.; Lam, J., Aperiodic sampled-data controller design for switched Ito stochastic Markovian jump systems, Systems & Control Letters, 157, 105301 (2021) · Zbl 1480.93249 · doi:10.1016/j.sysconle.2021.105031
[24] Chang, S.; Peng, T., Adaptive guaranteed cost control of systems with uncertain parameters, IEEE Transactions Automatica Control, AC-17, 474-483 (1972) · Zbl 0259.93018 · doi:10.1109/TAC.1972.1100037
[25] Wang, Z.; Wu, H., Robust guaranteed cost sampled-data fuzzy control for uncertain nonlinear time-delay systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49, 5, 964-975 (2019) · doi:10.1109/TSMC.2017.2703837
[26] Xie, X.; Lam, J., Guaranteed cost control of periodic piecewise linear time-delay systems, Automatica, 94, 274-282 (2018) · Zbl 1401.93178 · doi:10.1016/j.automatica.2018.04.047
[27] Gu, K.; Chen, J.; Kharitonov, V. L., Stability of Time-Delay Systems (2003), Berline: Springer Science & Business Media, Berline · Zbl 1039.34067 · doi:10.1007/978-1-4612-0039-0
[28] Sun, J.; Liu, G. P.; Chen, J., Delay-dependent stability and stabilization of neutral time-delay systems, International Journal of Robust and Nonlinear Control, 19, 12, 1364-1375 (2010) · Zbl 1169.93399 · doi:10.1002/rnc.1384
[29] Wang, Y.; Xie, L.; De Souza, C. E., Robust control of a class of uncertain nonlinear systems, Systems & Control Letters, 19, 139-149 (1992) · Zbl 0765.93015 · doi:10.1016/0167-6911(92)90097-C
[30] Li, P. S.; Lam, J.; Lu, R. Q., Stability and L_2 synthesis of a class of periodic piecewise time-varying systems, IEEE Transactions on Automatic Control, 64, 8, 3378-3384 (2019) · Zbl 1482.93186 · doi:10.1109/TAC.2018.2880678
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.