×

A Bombieri-Vinogradov theorem for number fields. (English) Zbl 1533.11192

Let \(K/M\) be a Galois extension of number fields with Galois group \(G\) and let \(C\) be a conjugacy class in \(G\). For rational integers \(q\) and \(a\) prime to \(q\) let \(\pi(x,C,q,a)\) be the number of prime ideals \(\mathfrak p\) of \(M\) unramified in \(K\) with \(N_{M/\mathbb Q}(\mathfrak p)\le x\), \(N_{M/\mathbb Q}(\mathfrak p)\equiv a\) mod \(q\) with its Frobenius class \(\sigma_\mathfrak p\) lying in \(C\). The authors apply an analogue of a method used by R. C. Vaughan in the rational case [Acta Arith. 37, 111–115 (1980; Zbl 0448.10037)] to show that if \(H\) is the largest abelian subgroup of \(G\) with \(C\cap H\ne\emptyset\), and \(\theta=\min\{2/n_E,1/2\}\), where \(n_E\) is the degree of the fixed field \(E\) of \(H\), then for any \(A>0\) there exists \(B(A)>0\) such that one has \[ \sum_{q\le Q} {'}\max_a\max_{y\le x}\left|\pi(y,C,q,a)-\frac{|C|}{|G|\varphi(q)}\pi(y)\right|\ll \frac x{\log^Ax}, \] where \(Q=x^\theta\log^{-B}x\) and the sum runs over numbers \(q\) with \(K\cap \mathbb Q(\zeta_q)=\mathbb Q\).
This improves in case \(n_E\ge4\) the earlier result of M. R. Murty and K. L. Petersen [Trans. Am. Math. Soc. 365, No. 9, 4987–5032 (2013; Zbl 1336.11072)], where \(q=x^{\theta-\varepsilon}\) with \(\theta =\min\{2/(n_E-2),1/2\}\).
The main result is applied to improve J. Thorner’s bound for gaps of primes in Chebotarev sets in the case of non-abelian fields of degree \(\ge8\) [Res. Math. Sci. 1, Paper No. 4, 16 p. (2014; Zbl 1362.11082)] and the result of R. Gupta et al. [in: Number theory, Proc. Conf., Montreal/Can. 1985, CMS Conf. Proc. 7, 189–201 (1987; Zbl 0618.12006)] on the Euclideanity of rings of \(S\)-integers.

MSC:

11R42 Zeta functions and \(L\)-functions of number fields
11M41 Other Dirichlet series and zeta functions
11R44 Distribution of prime ideals
11R45 Density theorems
Full Text: DOI

References:

[1] K.Bartz, An effective order of Hecke-Landau zeta functions near the line = 1, II (some applications). Acta Arith.52 (1989), 163-170. · Zbl 0621.12013
[2] E.Bombieri, On the large sieve. Mathematika12 (1965), 201-225. · Zbl 0136.33004
[3] D.Bump, J. W.Cogdell, E.deShalit, D.Gaitsgory, J.W.Cogdell and D.Bump. An Introduction to the Langlands Program, Birkhäuser (Boston, MA, 2003).
[4] C. J.Bushnell and G.Henniart, An upper bound on conductors for pairs. J. Number Theory65 (1997), 183-196. · Zbl 0884.11049
[5] M. D.Coleman, A zero‐free region for the Hecke L‐functions. Mathematika37 (1990), 287-304. · Zbl 0721.11050
[6] E.Fogels, A mean value theorem of Bombieri’s type. Acta Arith.21 (1972), 137-151. · Zbl 0213.07001
[7] P. X.Gallagher, Bombieri’s mean value theorem. Mathematika15 (1968), 1-6. · Zbl 0174.08103
[8] D.Goldfeld, Automorphic Forms and L‐Functions for the Group \(\operatorname{GL} ( n , \mathbb{R} )\), Vol. 99, Cambridge University Press (Cambridge, 2006). · Zbl 1108.11039
[9] D. A.Goldston, J.Pintz, C. Y.Yıldırım, Primes in tuples I. Ann. of Math. (2)170 (2009), 819-862. · Zbl 1207.11096
[10] A.Granville, Primes in intervals of bounded length. Bull. Amer. Math. Soc. (N.S.)52 (2015), 171-222. · Zbl 1319.11064
[11] R.Gupta, M. R.Murty and V. K.Murty, The Euclidean algorithm for S‐integers. Number Theory (CMS Conference Proceedings7) (ed. H.Kisilevsky (ed.) and J.Labute (ed.)) American Mathematical Society (Providence, RI, 1987), 189-201. · Zbl 0618.12006
[12] M.Harper and M. R.Murty, Euclidean rings of algebraic integers. Canad. J. Math.56 (2004), 71-76. · Zbl 1048.11080
[13] D. R.Heath‐Brown, On the density of the zeros of the Dedekind zeta‐function. Acta Arith.33(2) (1977), 169-181. · Zbl 0325.12003
[14] J.Hinz, Über Nullstellen der Heckeschen Zetafunctionen in algebraischen Zahlkörpern. Acta Arith.31 (1976), 167-193. · Zbl 0304.12011
[15] J.Hoffstein and D.Ramakrishnan, Siegel zeros and cusp forms. Int. Math. Res. Not.6 (1995), 279-308. · Zbl 0847.11043
[16] M. N.Huxley, The large sieve inequality for algebraic number fields iii. Zero‐density results. J. Lond. Math. Soc.3 (1971), 233-240. · Zbl 0213.07101
[17] M. N.Huxley and H.Iwaniec, Bombieri’s theorem in short intervals. Mathematika22 (1975), 188-194. · Zbl 0317.10048
[18] H.Iwaniec and E.Kowalski, Analytic number theory, Vol. 53, American Mathematical Society (Providence, RI, 2004). · Zbl 1059.11001
[19] M.Jutila, A statistical density theorem for L‐functions with applications. Acta Arith.16 (1969), 207-216. · Zbl 0185.10901
[20] D.Johnson, Mean values of Hecke L‐functions. J. reine angew. Math.305 (1979), 195-205. · Zbl 0392.10042
[21] H. W.Lenstra, On Artin’s conjecture and Euclid’s algorithm in global fields. Invent. Math.42 (1977), 201-224. · Zbl 0362.12012
[22] J.Maynard, Small gaps between primes. Ann. of Math. (2)181 (2015), 383-413. · Zbl 1306.11073
[23] Y.Motohashi, An induction principle for the generalization of Bombieri’s prime number theorem. Proc. Japan Acad.52 (1976), 273-275. · Zbl 0355.10035
[24] M. R.Murty and V. K.Murty, A variant of the Bombieri-Vinogradov theorem. Number Theory7 (1987), 243-272. · Zbl 0619.10039
[25] M. R.Murty and V. K.Murty, Non‐Vanishing of L‐Functions and Applications, Springer Science & Business Media (Berlin, 2012). · Zbl 1235.11086
[26] M. R.Murty and K.Petersen, The generalized Artin conjecture and arithmetic orbifolds. Groups Symmetries47 (2009), 259-265. · Zbl 1230.11141
[27] M. R.Murty and K.Petersen, A Bombieri-Vinogradov theorem for all number fields. Trans. Amer. Math. Soc.365 (2013), 4987-5032. · Zbl 1336.11072
[28] P.Shiu, A Brun-Titchmarsh theorem for multiplicative functions. J. reine angew. Math.313 (1980), 161-170. · Zbl 0412.10030
[29] H. M.Stark, Some effective cases of the Brauer-Siegel theorem. Invent. Math.23 (1974), 135-152. · Zbl 0278.12005
[30] J.Thorner, Bounded gaps between primes in Chebotarev sets. Res. Math. Sci.1 (2014), 4. · Zbl 1362.11082
[31] J.Thorner, A variant of the Bombieri-Vinogradov theorem in short intervals and some questions of Serre. Math. Proc. Cambridge Philos. Soc.161 (2016), 53-63. · Zbl 1371.11133
[32] A.Vatwani and P. J.Wong, Patterns of primes in Chebotarev sets. Int. J. Number Theory13(07) (2017), 1651-1677. · Zbl 1375.11064
[33] R. C.Vaughan, An elementary method in prime number theory. Acta Arith.37 (1980), 111-115. · Zbl 0448.10037
[34] A. I.Vinogradov, The density hypothesis for Dirichlet L‐series. Izv. Akad. Nauk SSSR Ser. Mat.29 (1965), 903-934. · Zbl 0128.04205
[35] P. J.Weinberger, On Euclidean rings of algebraic integers. Proc. Sympos. Pure Math.24 (1973), 321-332. · Zbl 0287.12012
[36] R. J.Wilson, The large sieve in algebraic number fields. Mathematika16 (1969), 189-204. · Zbl 0186.08502
[37] D.Wolke, Über die mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen. I. Math. Ann.202 (1973), 1-25. · Zbl 0238.10031
[38] Y.Zhang, Bounded gaps between primes. Ann. of Math. (2)179 (2014), 1121-1174. · Zbl 1290.11128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.