×

Finite-time non-smooth stabilization of cascade output-constrained switched systems. (English) Zbl 1532.93317

Summary: Finite-time non-smooth stabilization of cascade output-constrained switched systems via state feedback is investigated. The cascade switched systems consist of subsystems in general form with zero dynamics and mixed powers taken into account. To deal with the finite-time stabilization problem of such kind of switched systems, some mild assumptions, input-to-state stability property of zero dynamics, an appropriate growth rate assumption on nonlinear terms and some well-known conditions for small signals, have been imposed on subsystems. Then, state feedback controllers are constructed first by revamping adding a power integrator technique and finite-time stability analysis of the resultant closed-loop switched systems are implemented by the deliberately constructed tangent-type barrier Lyapunov function (\(T_{\mathit{an}}\)-BLF). Meanwhile, the output constraint of switched systems is also implicitly guaranteed by the \(T_{\mathit{an}}\)-BLF. Switched systems discussed in this article can encompass almost all \(p\)-normal ones because of the inclusion of zero dynamics, mixed powers, and the homogeneous upper bounded assumption on nonlinear terms. And, the method proposed in this article operates in a unified framework to tackle finite-time stabilization of switched systems because the constructed common \(T_{\mathit{an}}\)-BLF degenerates into a quadratic function when the output constraint tends to infinity. Simulations are carried out to show the efficiency of the proposed method.
{© 2022 John Wiley & Sons Ltd.}

MSC:

93D40 Finite-time stability
93D15 Stabilization of systems by feedback
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
Full Text: DOI

References:

[1] HaimoVT. Finite time controllers. SIAM J Control Optim. 1986;24(4):760‐770. · Zbl 0603.93005
[2] BhatSP, BernsteinDS. Finite‐time stability of continuous autonomous systems. SIAM J Control Optim. 2000;38(3):751‐766. · Zbl 0945.34039
[3] BhatSP, BernsteinDS. Geometric homogeneity with applications to finite‐time stability. Math Control Signals Syst. 2005;17:101‐127. · Zbl 1110.34033
[4] HongYG, JiangZP. Finite‐time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans Automat Contr. 2006;51(12):1950‐1956. · Zbl 1366.93577
[5] LiJ, QianCJ. Global finite‐time stabilization by dynamic output feedback for a class of continuous nonlinear systems. IEEE Trans Automat Contr. 2006;51(5):879‐884. · Zbl 1366.93507
[6] MoulayE, FerruquettiW. Finite time stability conditions for non‐autonomous continuous systems. Int J Control. 2008;81(5):797‐803. · Zbl 1152.34353
[7] FengY, YuXH, HanFL. On nonsingular terminal sliding‐mode control of nonlinear systems. Automatica. 2013;49:1715‐1722. · Zbl 1360.93153
[8] MaJL, ParkJH, XuSY. Finite‐time adaptive control of high‐order nonlinear systems with unknown control coefficients and actuator fault. Int J Robust Nonlinear Control. 2020;30:7750‐7765. · Zbl 1525.93383
[9] WenGH, ZhengWX, DuHB. Homogeneous constrained finite‐time controller for double integrator systems: analysis and experiment. Automatica. 2021;134:109894. · Zbl 1478.93607
[10] ChenX, ZhengSQ, AhnKC, XieYL, ShiP. Constrained fast finite‐time exact tracking for disturbed nonlinear systems. Int J Robust Nonlinear Control. 2022;32:4376‐4400. · Zbl 1528.93194
[11] LiberzonD. Switching in Systems and Control. Burkhäuser; 2003. · Zbl 1036.93001
[12] ShortenR, WirthF, MasonO, WulffK, KingC. Stability criteria for switched and hybrid systems. SIAM Rev. 2007;49(4):545‐592. · Zbl 1127.93005
[13] HaiL, AntsaklisP. Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans Automat Contr. 2009;54(2):308‐322. · Zbl 1367.93440
[14] OrlovY. Finite‐time stability and robust control synthesis of uncertain switched systems. SIAM J Control Optim. 2005;43(4):1253‐1271. · Zbl 1085.93021
[15] FuJ, MaRC, ChaiTY. Global finite‐time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers. Automatica. 2015;54:360‐373. · Zbl 1318.93081
[16] HuangSP, XiangZR. Finite‐time stabilization of a class of swithced stochastic noninear systems under arbitrary swithing. Int J Robust Nonlinear Control. 2016;26(6):2136‐2152. · Zbl 1342.93114
[17] ZhaiJY, SongZB, FeiSM, ZhuZW. Global finite‐time output feedback stablization for a class of switched higher‐order nonlinear systems. Int J Control. 2018;91(1):170‐180. · Zbl 1390.93650
[18] LinXZ, ChenCC. Finite‐time output feedback stabilization of planar switched systems with/without an output constraint. Automatica. 2021;131:109728. · Zbl 1478.93502
[19] LinXZ, ChenCC, LiSH. Finite‐time output feedback stabilization for a class of output‐constrained planar switched systems. IEEE Trans Circuits Syst II Exp Briefs. 2022;69(1):164‐168.
[20] IsidoriA. The zero dynamics of a nonlinear system: from the origin to the latest progresses of a long successful story. Eur J Control. 2013;19:369‐378. · Zbl 1293.93666
[21] JiangZP, PralyL. Design of robust adaptive controller for nonlinear systems with dynamic uncertainties. Automatica. 1998;34:835‐840. · Zbl 0951.93042
[22] JiangZP, MarcelsI. Robust nonlinear integral control. IEEE Trans Automat Contr. 2001;46(8):1336‐1342. · Zbl 1002.93055
[23] TsiniasJ. Partial‐state global stabilization for general triangular systems. Syst Control Lett. 1995;24(2):139‐145. · Zbl 0877.93093
[24] KhalilH. Nonlinear systems. Prentice Hall; 2002. · Zbl 1003.34002
[25] SontagED, YuanW. New characterizations of input‐to‐state stability. IEEE Trans Automat Contr. 1996;41(8):1283‐1294. · Zbl 0862.93051
[26] DingSH, LiSH, ZhengWX. Nonsmooth stabilization of a class of nonlinear cascaded systems. Automatica. 2012;48:2597‐2606. · Zbl 1271.93116
[27] HuangSP, XiangZR. Finite‐time stabilization of switched stochastic nonlinear systems with mixed odd and even powers. Automatica. 2016;73:130‐137. · Zbl 1372.93211
[28] GilbertEG, TanKT. Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans Automat Contr. 1991;36(9):1008‐1020. · Zbl 0754.93030
[29] BlanchiniF. Set invariance in control. Automatica. 1999;35(11):1747‐1767. · Zbl 0935.93005
[30] ZhangLG, LiuXJ. The synchronization between two discrete‐time chaotic systems using active robust model predictive control. Nonlinear Dyn. 2013;74(4):905‐910. · Zbl 1284.34063
[31] FangLD, DingSH, ParkJH, MaL. Adaptive fuzzy output‐feedback control design for a class of p‐norm stochastic nonlinear systems with output constraints. IEEE Trans Circuits Syst‐I Regul Pap. 2021;68(6):2626‐2673.
[32] SunW, ChenH, YeowJ. Barrier lyapunov function‐based output regulation control of an electromagnetic micromirror with transient performance constraint. IEEE Trans Syst Man Cybern Syst. 2021;52(7):4080‐4091. doi:10.1109/TSMC.2021.3090090
[33] ZhangY, HuaC. Composite learning finite‐time control of robotic systems with output constraints. IEEE Trans Ind Electron. 2022;70(2):1687‐1695. doi:10.1109/TIE.2022.3161796
[34] WangAQ, LiuL, QiuJB, FengG. Event‐triggered adaptive fuzzy output‐feedback control for nonstrict‐feedback nonlinear systems with asymmetric output constraint. IEEE Trans Cybern. 2022;52(1):712‐722.
[35] MaoJ, XiangZR, ZhaiGS. Sampled‐data output feedback stabilization for a class of switched stochastic nonlinear systems. Int J Robust Nonlinear Control. 2019;29(10):2844‐2861. doi:10.1002/rnc.4519 · Zbl 1418.93222
[36] JinX. Adaptive finite‐time fault‐tolerant tracking conrol for a class of MIMO nonlinear systems with output constraints. Int J Robust Nonlinear Control. 2017;27(5):722‐741. · Zbl 1359.93226
[37] LinXZ, LiXL, ParkJH. Output feedback stabilization for planar output constrained switched nonlinear systems. Int J Robust Nonlinear Control. 2020;30(5):1819‐1830. · Zbl 1465.93163
[38] NgoKB, MahonyR, JiangZP. Integrator backstepping using barrier functions for systems with multiple state constraints. Proceedings of the 44th IEEE Conference on Decision and Control; 2005:8306‐8312.
[39] TeeKP, GeSS, TayEH. Barrier Lyapunov functions for the control of output‐constrained nonlinear systems. Automatica. 2009;45(4):918‐927. · Zbl 1162.93346
[40] NiuB, ZhaoJ. Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems. Syst Control Lett. 2013;62:963‐971. · Zbl 1281.93092
[41] NiuB, XiangZR. State‐constrained robust satabilization for a class of high‐order swtiched nonlinear systems. IET Control Theory Appl. 2015;9(12):1901‐1908.
[42] LinXZ, XueJL, ZhengEL, ParkJH. State feedback stabilization for high‐order output‐constrained switched nonlinear systems. IEEE Trans Syst Man Cybern Syst. 2022. doi:10.1109/TSMC.2022.3154753
[43] HongYG, WangJK, ChengDZ. Adaptive finite‐time control of nonlinear systems with parametric uncertainty. IEEE Trans Automat Contr. 2006;51(5):858‐862. · Zbl 1366.93290
[44] SunZY, ZhouCQ, ChenCC, MengQH. Fast finite‐time adaptive stabilization of high‐order uncertain nonlinear systems with output constraint and zero dynamics. Inf Sci. 2020;514:571‐586. · Zbl 1461.93457
[45] Mancilla‐AguilarJ, GarcíaR. On converse Lyapunov theorems for ISS and IISS switched nonlinear systems. Syst Control Lett. 2001;42(1):47‐53. · Zbl 0985.93052
[46] QianCJ, LinW. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans Automat Contr. 2001;46(7):1061‐1079. · Zbl 1012.93053
[47] PolendoC, QianCJ. An expanded method to robustly stabilize uncertain nonlinear systems. Commun Inf Syst. 2008;1:55‐70. · Zbl 1158.93394
[48] LiXL, LinXZ, ZouY. Finite‐time stabilization of high‐order output‐constrained switched systems via state feedback. Appl Math Comput. 2021;403(6):125935. · Zbl 1510.93247
[49] HardyG, LittlewoodJ, PólyaG. Inequalities. Vol 37. 2nd ed.Cambridge University Press; 1953:236.
[50] QianCJ, LinW. Smooth output feedback stabilization of planar systems without controllable/observable linearization. IEEE Trans Automat Contr. 2002;47(12):2068‐2073. · Zbl 1364.93665
[51] LinW, QianCJ. Adaptive control of nonlinearly parameterized systems: the smooth feedback case. IEEE Trans Automat Contr. 2001;47(8):1249‐1266. · Zbl 1364.93399
[52] SunZY, ZhangXH, XieXJ. Global continuous output‐feedback stabilization for a class of high‐order nonlinear systems with multiple time delays. J Franklin Inst. 2014;351(8):4334‐4356. · Zbl 1294.93070
[53] BeckenbachE, BellmanR. Ineualities. Spring‐Verlag; 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.