×

Continuous selections of set-valued mappings and approximation in asymmetric and semilinear spaces. (English. Russian original) Zbl 1532.41034

Izv. Math. 87, No. 4, 835-851 (2023); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 87, No. 4, 205-224 (2023).
An asymmetric seminorm is a positive, positively homogeneous and subadditive functional \(\|\cdot|\) on a real linear space \(X\), or on a cone \(X\) (also called a semilinear space). Asymmetric semimetrics \(\rho\) (or quasi-metrics) are considered as well (see, for instance, [the reviewer, Functional analysis in asymmetric normed spaces. Basel: Birkhäuser (2013; Zbl 1266.46001)].
The author extends Michael’s selection theorem, in both symmetric and asymmetric cases, to set-valued mappings taking values in the class of \(\overset{\circ}{B}\)-infinitely connected subsets, a class that properly contains that of convex subsets. Applications are given to the set-valued operators of best and of near-best approximation.
He also considers \(\varepsilon\)-selections \(\varphi:X\to M\) of the metric projection on a convex subset \(M\) of an asymmetric normed space \((X,\|\cdot|)\), meaning additive \(\varepsilon\)-selections, satisfying \(\rho(x,\varphi(x)\le\rho(x,M)+\varepsilon\), or multiplicative ones, such that \(\rho(x,\varphi(x)\le(1+\varepsilon)\rho(x,M),\) where \(\rho(x,M)=\inf\{\|y-x|:y\in M\}.\)
Another result proved in the paper is that in the space of all convex non-empty bounded subsets of a reflexive normed space \(X\) equipped with the Hausdorff semimetric, every bounded set admits a Chebyshev center.

MSC:

41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
54C65 Selections in general topology

Citations:

Zbl 1266.46001

References:

[1] V. Donjuán and N. Jonard-Pérez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math. 43:4 (2020), 467-491. · Zbl 1479.46006 · doi:10.2989/16073606.2019.1581298
[2] S. Cobzaş, “Separation of convex sets and best approximation in spaces with asymmetric norm”, Quaest. Math. 27:3 (2004), 275-296. · Zbl 1082.41024 · doi:10.2989/16073600409486100
[3] Ş. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel 2013. · Zbl 1266.46001 · doi:10.1007/978-3-0348-0478-3
[4] A. R. Alimov, “The Banach-Mazur theorem for spaces with an asymmetric distance”, Uspekhi Mat. Nauk 58:2(350) (2003), 159-160; · Zbl 1064.46067 · doi:10.1070/RM2003v058n02ABEH000615
[5] English transl. 58:2 (2003), 367-369. · Zbl 1064.46067 · doi:10.1070/RM2003v058n02ABEH000615
[6] A. R. Alimov, “On the structure of the complements of Chebyshev sets”, Funktsional. Anal. i Prilozhen. 35:3 (2001), 19-27; English transl., Funct. Anal. Appl. 35:3 (2001), 176-182. · Zbl 1099.41501 · doi:10.1023/A:1012370610709
[7] A. R. Alimov, “Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces”, Izv. Saratov Univ. Math. Mech. Inform. 14:4(2) (2014), 489-497. (in Russian) · Zbl 1310.41024 · doi:10.18500/1816-9791-2014-14-4-489-497
[8] A. R. Alimov and I. G. Tsar’kov, “Ball-complete sets and solar properties of sets in asymmetric spaces”, Results Math. 77:2 (2022), 86. · Zbl 1506.46016 · doi:10.1007/s00025-022-01619-2
[9] I. G. Tsarkov, “Uniformly and locally convex asymmetric spaces”, Russ. J. Math. Phys. 29:1 (2022), 141-148. · Zbl 1494.46012 · doi:10.1134/S1061920822010137
[10] I. G. Tsar’kov, “Approximative properties of sets and continuous selections”, Mat. Sb. 211:8 (2020), 132-157; · Zbl 1455.54019 · doi:10.1070/SM9319
[11] English transl., Sb. Math. 211:8 (2020), 1190-1211. · Zbl 1455.54019 · doi:10.1070/SM9319
[12] I. G. Tsar’kov, “Weakly monotone sets and continuous selection in asymmetric spaces”, Mat. Sb. 210:9 (2019), 129-152; · Zbl 1428.41042 · doi:10.1070/SM9107
[13] English transl., Sb. Math. 210:9 (2019), 1326-1347. · Zbl 1428.41042 · doi:10.1070/SM9107
[14] I. G. Tsar’kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. RAN. Ser. Mat. 82:4 (2018), 199-224; English transl., Izv. Math. 82:4 (2018), 837-859. · Zbl 1410.46007 · doi:10.1070/IM8695
[15] I. G. Tsar’kov, “Continuous selections in asymmetric spaces”, Mat. Sb. 209:4 (2018), 95-116; English transl., Sb. Math. 209:4 (2018), 560-579. · Zbl 1437.54017 · doi:10.1070/SM8855
[16] I. G. Tsar’kov, “Properties of monotone path-connected sets”, Izv. RAN. Ser. Mat. 85:2 (2021), 142-171; · Zbl 1466.41017 · doi:10.1070/IM8995
[17] English transl., Izv. Math. 85:2 (2021), 306-331. · Zbl 1466.41017 · doi:10.1070/IM8995
[18] I. G. Tsar’kov, “Solarity and connectedness of sets in the space C[a, b] and in finite-dimensional polyhedral spaces”, Mat. Sb. 213:2 (2022), 149-166; English transl., Sb. Math. 213:2 (2022), 268-282. · Zbl 1502.41013 · doi:10.1070/SM9554
[19] I. G. Tsar’kov, “Uniform convexity in nonsymmetric spaces”, Mat. Zametki 110:5 (2021), 773-785; English transl., Math. Notes 110:5 (2021), 773-783. · Zbl 1489.46022 · doi:10.1134/S0001434621110146
[20] I. G. Tsar’kov, “Continuous ε-selection”, Mat. Sb. 207:2 (2016), 123-142; English transl., Sb. Math. 207:2 (2016), 267-285. · Zbl 1347.41047 · doi:10.1070/SM8481
[21] D. Repovš and P. V. Semenov, “Michael”s theory of continuous selections. Development and applications”, Uspekhi Mat. Nauk 49:6(300) (1994), 151-190; · Zbl 0848.54014 · doi:10.1070/RM1994v049n06ABEH002450
[22] English transl., Russian Math. Surveys 49:6 (1994), 157-196. · Zbl 0848.54014 · doi:10.1070/RM1994v049n06ABEH002450
[23] R. A. Khachatryan, “On continuous selections of set-valued mappings with almost convex values”, Izv. RAN RA. Matem. 54:1 (2019), 60-75; English transl., J. Contemp. Math. Anal. 54:1 (2019), 28-37. · Zbl 1425.26021 · doi:10.3103/S1068362319010047
[24] E. Michael, “A selection theorem”, Proc. Amer. Math. Soc. 17 (1966), 1404-1406. · Zbl 0178.25902 · doi:10.2307/2035751
[25] G. Beer, Topologies on closed and closed convex sets, Math. Appl., vol. 268, Kluwer Acad. Publ., Dordrecht 1993. · Zbl 0792.54008 · doi:10.1007/978-94-015-8149-3
[26] L. M. García-Raffi, S. Romaguera, and E. A. Sánchez Pérez, “On Hausdorff asymmetric normed linear spaces”, Houston J. Math. 29:3 (2003), 717-728. · Zbl 1131.46300
[27] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. RAN. Ser. Mat. 78:4 (2014), 3-18; English transl., Izv. Math. 78:4 (2014), 641-655. · Zbl 1303.41018 · doi:10.1070/IM2014v078n04ABEH002702
[28] I. G. Tsar’kov, “Properties of suns in the spaces L 1 and C(Q)”, Russ. J. Math. Phys. 28:3 (2021), 398-405. · Zbl 1487.41042 · doi:10.1134/S1061920821030122
[29] I. G. Tsar’kov, “Continuity of a metric function and projection in asymmetric spaces”, Mat. Zametki 111:4 (2022), 606-615; English transl., Math. Notes 111:4 (2022), 616-623. · Zbl 1504.46018 · doi:10.1134/S0001434622030300
[30] Igor’ G. Tsar’kov Faculty of Mechanics and Mathematics, Moscow State University;
[31] Moscow Center of Fundamental and Applied Mathematics E-mail: tsar@mech.math.msu.su
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.