×

Hall algebras and quantum symmetric pairs. I: Foundations. (English) Zbl 1532.17018

This paper provides a realization of \(\imath\)quantum groups as Hall algebras.
In the first part, the authors construct semi-derived Ringel-Hall algebras of quivers with involutions, called \(\imath\)quivers. To an \(\imath\)quiver \((Q,\tau)\) they associate a finite-dimensional algebra \(\Lambda^\imath\), and explicitly describe \(\Lambda^\imath\) as a bound quiver algebra as well as a tensor algebra. It is shown that \(\Lambda^\imath\) is \(1\)-Gorenstein, which is necessary for the construction of the (twisted) semi-derived Ringel-Hall algebras \(\mathcal{SDH}(\Lambda^\imath)\) and \(\mathcal{SD}\widetilde{\mathcal{H}}(\Lambda^\imath)\), and the reduced version \(\mathcal{SDH}_{\mathrm{red}}(\Lambda^\imath)\). This construction and the theory of semi-derived Ringel-Hall algebras in general are explained in an appendix by the first author. From the general theory, the authors in particular obtain PBW bases and monomial bases of \(\mathcal{SDH}(\Lambda^\imath)\) and \(\mathcal{SD}\widetilde{\mathcal{H}}(\Lambda^\imath)\) for \(Q\) of Dynkin type.
The involution \(\tau\) also induces an involution \(\hat{\tau}\) on \(D^b(kQ)\), and the authors prove that the singularity category \(D_{\mathrm{sg}}(\Lambda^\imath)\) is equivalent to \(D^b(kQ)/\Sigma\hat{\tau}\). By a well-known theorem of Buchweitz and Happel, these categories can moreover be identified with the stable category of Gorenstein projective \(\Lambda^\imath\)-modules. Furthermore, it is shown that \(\mathcal{SDH}(\Lambda^\imath)\) is isomorphic to \(\mathcal{SDH}(\mathrm{End}(T))\) for any tilting module \(T\) such that \(\mathrm{End}(T)\) is \(1\)-Gorenstein.
From an acyclic \(\imath\)quiver one obtains the quantum symmetric pair \((\mathbf{U},\mathbf{U}^\imath)\) consisting of the quantum group and the \(\imath\)quantum group, a certain coideal subalgebra. The authors introduce a universal version \((\widetilde{\mathbf{U}},\widetilde{\mathbf{U}}^\imath)\) using the universal quantum group \(\widetilde{\mathbf{U}}\), which in comparison to \(\mathbf{U}\) has the Cartan subalgebra doubled.
In the second part of the paper, the authors construct isomorphisms of algebras \(\widetilde{\mathbf{U}}^\imath_{|v=\sqrt{q}}\cong \mathcal{SD}\widetilde{\mathcal{H}}(\Lambda^\imath)\) and \(\mathbf{U}^\imath_{|v=\sqrt{q}}\cong\mathcal{SDH}_{\mathrm{red}}(\Lambda^\imath)\) for Dynkin \(\imath\)quivers, with \(\Lambda^\imath\) considered over the finite field \(\mathbb{F}_q\). Furthermore, they obtain embeddings of algebras \(\widetilde{\mathbf{U}}_{|v=\sqrt{q}}\hookrightarrow\mathcal{SD}\widetilde{\mathcal{H}}(\Lambda)\) and \(\mathbf{U}_{|v=\sqrt{q}}\hookrightarrow\mathcal{SDH}_{\mathrm{red}}(\Lambda)\), where \(\Lambda=(\Lambda^{\mathrm{dbl}})^\imath\) is constructed by doubling the quiver \(Q\). These embeddings are isomorphisms if and only if \(Q\) is of Dynkin type. This is a version of a result of Bridgeland [T. Bridgeland, Ann. Math. (2) 177, No. 2, 739–759 (2013; Zbl 1268.16017)].
Moreover, the authors show that the structure constants of \(\mathcal{SD}\widetilde{\mathcal{H}}(\Lambda^\imath)\) and \(\mathcal{SDH}_{\mathrm{red}}(\Lambda^\imath)\) are Laurent polynomials, and use this to construct the (reduced) generic Hall algebras \(\widetilde{\mathcal{H}}(Q,\tau)\) and \(\mathcal{H}_{\mathrm{red}}(Q,\tau)\). By construction, these specialize to the (twisted respectively reduced) semi-derived Ringel-Hall algebras, and it follows that for Dynkin quivers the (reduced) generic Hall algebras are isomorphic to \(\widetilde{\mathbf{U}}^\imath\) and \(\mathbf{U}^\imath\), respectively. Altogether, these results in particular provide PBW bases for \(\widetilde{\mathbf{U}}^\imath\) and \(\mathbf{U}^\imath\).
The paper is the first in a series of three articles, for Parts II and III see [M. Lu and W. Wang, Commun. Math. Phys. 381, No. 3, 799–855 (2021; Zbl 1479.17029)] and [M. Lu and W. Wang, Adv. Math. 393, Article ID 108071, 70 p. (2021; Zbl 1484.17025)].

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
18G80 Derived categories, triangulated categories
18G65 Stable module categories

References:

[1] I.Assem, D.Simson, and A.Skowroński, Elements of the representation theory of associative algebras, 1: Techniques of Representation Theory, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge‐New York, 2004.
[2] M.Auslander and R.Buchweitz, The homological theory of maximal Cohen-Macaulay approximation, Colloque en l’honneur de Pierre Samuel (Orsay, 1987), Mém. Soc. Math. France (N.S.)38 (1989), 5-37. · Zbl 0697.13005
[3] L. L.Avramov and A.Martsinkovsky, Absolute, relative and Tate cohomology of modules of finite Gorenstein dimensions, Proc. Lond. Math. Soc. (3) 85 (2002), 393-440. · Zbl 1047.16002
[4] M.Balagovic and S.Kolb, Universal \(K\)‐matrix for quantum symmetric pairs, J. reine angew. Math.747 (2019), 299-353. · Zbl 1425.81058
[5] H.Bao, J.Kujawa, Y.Li, and W.Wang, Geometric Schur duality of classical type, Transform. Groups23 (2018), 329-389. · Zbl 1440.17009
[6] H.Bao, P.Shan, W.Wang, and B.Webster, Categorification of quantum symmetric pairs I, Quantum Topol.9 (2018), 643-714. · Zbl 1459.17028
[7] H.Bao and W.Wang, A new approach to Kazhdan‐Lusztig theory of type \(B\) via quantum symmetric pairs, Astérisque402 (2018), vii+134. · Zbl 1411.17001
[8] H.Bao and W.Wang, Canonical bases arising from quantum symmetric pairs, Invent. Math.213 (2018), 1099-1177. · Zbl 1416.17001
[9] R.Bautista, L.Salmerón, and R.Zuazua, Differential tensor algebras and their module categories, London Mathematical Society Lecture Notes, vol. 362, Cambridge University Press, Cambridge, 2009, x+452 pp. · Zbl 1266.16007
[10] K.Bongartz, On the degenerations and extensions of finite‐dimensional modules, Adv. Math.121 (1996), 245-287. · Zbl 0862.16007
[11] K.Bongartz and P.Gabriel, Covering spaces in representation theory, Invent. Math.65 (1982), 331-378. · Zbl 0482.16026
[12] S.Brenner and M. C. R.Butler, Generalisations of the Bernstein-Gelfand-Ponomarev reflection functors, Proc. ICRA II (Ottawa, 1979), Lecture Notes in Mathamatics, vol. 832, Springer, Berlin, 1980, pp. 103-169. · Zbl 0446.16031
[13] T.Bridgeland, Quantum groups via Hall algebras of complexes, Ann. of Math.177 (2013), 739-759. · Zbl 1268.16017
[14] Q.Chen and B.Deng, Cyclic complexes, Hall polynomial and simple Lie algebras, J. Algebra440 (2015), 1-32. · Zbl 1328.16007
[15] X‐W.Chen and M.Lu, Gorenstein homological properties of tensor rings, Nagoya Math. J.237 (2020), 188-208. · Zbl 1490.16016
[16] B.Deng, J.Du, B.Parshall, and J.Wang, Finite dimensional algebras and quantum groups, Mathematical Surveys and Monographs, vol. 150, AMS, Providence, RI, 2008. · Zbl 1154.17003
[17] V.Dlab and C. M.Ringel, Representations of graphs and algebras, Carleton Mathematical Lecture Notes, vol. 8, Carleton University, Ottawa, 1974, iii+86 pp.
[18] E. E.Enochs and O. M. G.Jenda, Relative homological algebra, de Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter, Berlin, 2000. · Zbl 0952.13001
[19] P.Gabriel, The universal cover of a representation finite algebra, Representation of algebras (eds. M.Auslander (ed.) and E.Lluis (ed.)), Lecture Notes in Mathematics, vol. 903, Springer, Berlin, 1981, pp. 65-105.
[20] C.Geiss, B.Leclerc, and J.Schröer, Quivers with relations for symmetrizable Cartan matrices I: Foundations, Invent. Math.209 (2017), 61-158. · Zbl 1395.16006
[21] M.Gorsky, Semi‐derived‐Hall algebras and tilting invariance of Bridgeland-Hall algebras. https://arxiv.org/abs/1303.5879.
[22] M.Gorsky, Semi‐derived and derived Hall algebras for stable categories, Int. Math. Res. Not.2018 (2018), 138-159. · Zbl 1411.18020
[23] J. A.Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math.120 (1995), 361-377. · Zbl 0836.16021
[24] D.Happel, Triangulated categories in the representation theory of finite dimensional algebras, London Mathematical Society Lecture Notes, vol. 119, Cambridge University Press, Cambridge, 1988. · Zbl 0635.16017
[25] D.Happel, On Gorenstein algebras, Progress in Mathematics, vol. 95, Birkhäuser, Basel, 1991, pp. 389-404. · Zbl 0759.16007
[26] M.Kapranov, Heisenberg doubles and derived categories, J. Algebra202 (1998), 712-744. · Zbl 0910.18005
[27] B.Keller, On triangulated orbit categories, Doc. Math.10 (2005), 551-581. · Zbl 1086.18006
[28] S.Kolb, Quantum symmetric Kac-Moody pairs, Adv. Math.267 (2014), 395-469. · Zbl 1300.17011
[29] G.Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra220 (1999), 729-767. · Zbl 0956.17007
[30] G.Letzter, Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge University Press, 2002, pp. 117-165. · Zbl 1025.17005
[31] G.Letzter, Quantum symmetric pairs and their zonal spherical functions, Transform. Groups8 (2003), 261-292. · Zbl 1107.17010
[32] F.Li, Modulation and natural valued quiver of an algebra, Pacific J. Math.256 (2012), 105-128. · Zbl 1283.16010
[33] Y.Li, Quiver varieties and symmetric pairs, Represent. Theory23 (2019), 1-56. · Zbl 1403.16009
[34] M.Lu, Singularity categories of representations of algebras over local rings, Colloq. Math.161 (2020), 1-33. · Zbl 1468.18007
[35] M.Lu and L.Peng, Semi‐derived Ringel‐Hall algbras and Drinfeld double, Adv. Math.383 (2021), 107668. · Zbl 1460.18007
[36] M.Lu and W.Wang, Hall algebras and quantum symmetric pairs II: reflection functors, Comm. Math. Phys.381 (2021), 799-855. · Zbl 1479.17029
[37] M.Lu and W.Wang, Hall algebras and quantum symmetric pairs III: quiver varieties, Adv. in Math.393 (2021), 108071. · Zbl 1484.17025
[38] M.Lu and W.Wang, Hall algebras and quantum symmetric pairs of Kac-Moody type. http://arxiv.org/abs/2006.06904. · Zbl 1533.17020
[39] M.Lu and B.Zhu, Singularity categories of Gorenstein monomial algebras, J. Pure Appl. Algebra225 (2021), 106651. · Zbl 1461.18011
[40] G.Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc.3 (1990), 447-498. · Zbl 0703.17008
[41] G.Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc.3 (1990), 257-296. · Zbl 0695.16006
[42] G.Lusztig, Introduction to quantum groups, Birkhäuser, Boston, MA, 1993. · Zbl 0788.17010
[43] B.Parshall and L.Scott, Derived categories, quasi‐hereditary algebras, and algebraic groups, Carlton University Mathematical Notes 3 (1989), 1-111.
[44] L.Peng and J.Xiao, Triangulated categories and Kac-Moody algebras, Invent. Math.140 (2000), 563-603. · Zbl 0966.16006
[45] F.Qin, Quantum groups via cyclic quiver varieties I, Compos. Math.152 (2016), 299-326. · Zbl 1377.16009
[46] M.Reineke, Generic extensions and multiplicative bases of quantum groups at \(q=0\), Represent. Theory5 (2001), 147-163. · Zbl 1050.17015
[47] C.Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. Éc. Norm. Supér.19 (1986), 275-301. · Zbl 0603.16025
[48] C. M.Ringel, Hall algebras, Banach Center Publ.26 (1990), 433-447. · Zbl 0778.16004
[49] C. M.Ringel, Hall algebras and quantum groups, Invent. Math.101 (1990), 583-591. · Zbl 0735.16009
[50] C. M.Ringel, The Hall algebra approach to quantum groups, Aportaciones Mat. Comun. 15 (1995), 85-114.
[51] C. M.Ringel, PBW‐bases of quantum groups, J. reine angrew. Math.470 (1996), 51-88. · Zbl 0840.17010
[52] C. M.Ringel and P.Zhang, Representations of quivers over the algebra of dual numbers, J. Algebra475 (2017), 237-360. · Zbl 1406.16010
[53] S.Ruan, J.Sheng, and H.Zhang, Lie algebras arising from 1‐cyclic perfect complexes, J. Algebra586 (2021), 232-288. · Zbl 1477.16022
[54] S.Scherotzke and N.Sibilla, Quiver varieties and Hall algebras, Proc. Lond. Math. Soc. (3)112 (2016), 1002-1018. · Zbl 1397.13031
[55] B.Töen, Derived Hall algebras, Duke Math. J.135 (2006), 587-615. · Zbl 1117.18011
[56] T.Wakamatsu, Grothendieck groups of subcategories, J. Algebra150 (1992), 187-205. · Zbl 0781.16003
[57] J.Xiao and F.Xu, Hall algebras associated to triangulated categories, Duke Math. J.143 (2008), 357-373. · Zbl 1168.18006
[58] K.Yamaura, Realizing stable categories as derived categories, Adv. Math.248 (2013), 784-819. · Zbl 1294.18009
[59] H.Zhang, Minimal generators of Hall algebras of 1‐cyclic perfect complexes, Int. Math. Res. Not.2021 (2021), 402-425. · Zbl 1508.16023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.