×

Deep order flow imbalance: extracting alpha at multiple horizons from the limit order book. (English) Zbl 1531.91240

Summary: We employ deep learning in forecasting high-frequency returns at multiple horizons for 115 stocks traded on Nasdaq using order book information at the most granular level. While raw order book states can be used as input to the forecasting models, we achieve state-of-the-art predictive accuracy by training simpler “off-the-shelf” artificial neural networks on stationary inputs derived from the order book. Specifically, models trained on order flow significantly outperform most models trained directly on order books. Using cross-sectional regressions, we link the forecasting performance of a long short-term memory network to stock characteristics at the market microstructure level, suggesting that “information-rich” stocks can be predicted more accurately. Finally, we demonstrate that the effective horizon of stock specific forecasts is approximately two average price changes.
{© 2023 Wiley Periodicals LLC.}

MSC:

91G15 Financial markets
68T07 Artificial neural networks and deep learning
Full Text: DOI

References:

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large‐scale machine learning on heterogeneous systems. https://www.tensorflow.org/
[2] Abergel, F., Anane, M., Chakraborti, A., Jedidi, A., & Toke, I. M. (2016). Limit order books. Cambridge University Press.
[3] Amihud, Y., & Mendelson, H. (1980). Dealership market: Market‐making with inventory. Journal of Financial Economics, 8(1), 31-53.
[4] Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez‐Paz, D. (2020). Invariant risk minimization. arXiv preprint arXiv:1907.02893.
[5] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
[6] Bengio, Y. (2012). Deep learning of representations for unsupervised and transfer learning. In Proceedings of ICML Workshop on Unsupervised and Transfer Learning, JMLR Workshop and Conference Proceedings (pp. 17-36).
[7] Bouchaud, J.‐P., Bonart, J., Donier, J., & Gould, M. (2018). Trades, quotes and prices: Financial markets under the microscope. Cambridge University Press.
[8] Bouchaud, J.‐P., Gefen, Y., Potters, M., & Wyart, M. (2004). Fluctuations and response in financial markets: The subtle nature of ‘random’ price changes. Quantitative Finance, 4(2), 176-190. · Zbl 1405.91730
[9] Bouchaud, J.‐P., Kockelkoren, J., & Potters, M. (2006). Random walks, liquidity molasses and critical response in financial markets. Quantitative Finance, 6(2), 115-123. · Zbl 1136.91415
[10] Briola, A., Turiel, J., & Aste, T. (2020). Deep learning modeling of limit order book: A comparative perspective. arXiv preprint arXiv:2007.07319.
[11] Brogaard, J., Hendershott, T., & Riordan, R. (2019). Price discovery without trading: Evidence from limit orders. The Journal of Finance, 74(4), 1621-1658.
[12] Bugaenko, A. (2020). Empirical study of market impact conditional on order‐flow imbalance.
[13] Cao, C., Hansch, O., & Wang, X. (2009). The information content of an open limit‐order book. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 29(1), 16-41.
[14] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder‐decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
[15] Chollet, F. (2015). Keras. https://github.com/fchollet/keras
[16] Chordia, T., Roll, R., & Subrahmanyam, A. (2002). Order imbalance, liquidity, and market returns. Journal of Financial Economics, 65(1), 111-130.
[17] Chordia, T., & Subrahmanyam, A. (2004). Order imbalance and individual stock returns: Theory and evidence. Journal of Financial Economics, 72(3), 485-518.
[18] Clevert, D.‐A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289.
[19] Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223-236. · Zbl 1408.62174
[20] Cont, R., Cucuringu, M., & Zhang, C. (2021). Price impact of order flow imbalance: Multi‐level, cross‐sectional and forecasting. Quantitative Finance. arXiv preprint arXiv:2112.13213, to appear.
[21] Cont, R., Kukanov, A., & Stoikov, S. (2014). The price impact of order book events. Journal of Financial Econometrics, 12(1), 47-88.
[22] Curato, G., & Lillo, F. (2015). How tick size affects the high frequency scaling of stock return distributions. In Financial econometrics and empirical market microstructure (pp. 55-76). Springer.
[23] Devlin, J., Chang, M.‐W., Lee, K., & Toutanova, K. (2018). BERT: Pre‐training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[24] Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, T. (2015). Long‐term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition (pp. 2625-2634).
[25] Easley, D., & O’Hara, M. (1987). Price, trade size, and information in securities markets. Journal of Financial Economics, 19(1), 69-90.
[26] Eisler, Z., Bouchaud, J.‐P., & Kockelkoren, J. (2012). The price impact of order book events: Market orders, limit orders and cancellations. Quantitative Finance, 12(9), 1395-1419. · Zbl 1279.91072
[27] Elmsili, B., & Outtaj, B. (2018). Artificial neural networks applications in economics and management research: An exploratory literature review. In 2018 4th International Conference on Optimization and Applications (ICOA) (pp. 1-6). IEEE.
[28] Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.‐A. (2019). Deep learning for time series classification: A review. Data Mining and Knowledge Discovery, 33(4), 917-963. · Zbl 1458.68196
[29] Friedman, J., Hastie, T., & Tibshirani, R. (2017). The elements of statistical learning. Series in Statistics New York (12th Printing ed.). Springer.
[30] Garman, M. B. (1976). Market microstructure. Journal of Financial Economics, 3(3), 257-275.
[31] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451-2471.
[32] Glosten, L. R., & Milgrom, P. R. (1985). Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. Journal of Financial Economics, 14(1), 71-100.
[33] Goettler, R. L., Parlour, C. A., & Rajan, U. (2009). Informed traders and limit order markets. Journal of Financial Economics, 93(1), 67-87.
[34] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. · Zbl 1373.68009
[35] Gould, M. D., & Bonart, J. (2016). Queue imbalance as a one‐tick‐ahead price predictor in a limit order book. Market Microstructure and Liquidity, 2(2), 1650006.
[36] Gould, M. D., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J., & Howison, S. D. (2013). Limit order books. Quantitative Finance, 13(11), 1709-1742. · Zbl 1284.91584
[37] Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.
[38] Graves, A., Mohamed, A.‐R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 6645-6649). IEEE.
[39] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE Transactions on Neural Networks And Learning Systems, 28(10), 2222-2232.
[40] Hamilton, J. D. (1994). Time series analysis. Princeton University Press. · Zbl 0831.62061
[41] Hasbrouck, J. (1988). Trades, quotes, inventories, and information. Journal of Financial Economics, 22(2), 229-252.
[42] Hasbrouck, J. (1991). Measuring the information content of stock trades. The Journal of Finance, 46(1), 179-207.
[43] Hasbrouck, J., & Saar, G. (2013). Low‐latency trading. Journal of Financial Markets, 16(4), 646-679.
[44] Ho, T., & Stoll, H. R. (1981). Optimal dealer pricing under transactions and return uncertainty. Journal of Financial Economics, 9(1), 47-73.
[45] Hochreiter, S., & Schmidhuber, J. (1997). Long short‐term memory. Neural Computation, 9(8), 1735-1780.
[46] Hoffmann, P. (2014). A dynamic limit order market with fast and slow traders. Journal of Financial Economics, 113(1), 156-169.
[47] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251-257.
[48] Huang, R., & Polak, T. (2011). LOBSTER: Limit order book reconstruction system. SSRN 1977207.
[49] Huang, R. D., & Stoll, H. R. (1994). Market microstructure and stock return predictions. The Review of Financial Studies, 7(1), 179-213.
[50] Jaisson, T., & Rosenbaum, M. (2016). Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes. The Annals of Applied Probability, 26(5), 2860-2882. · Zbl 1351.60046
[51] Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration of recurrent network architectures. In International Conference on Machine Learning (pp. 2342-2350). PMLR.
[52] Kaniel, R., & Liu, H. (2006). So what orders do informed traders use?The Journal of Business, 79(4), 1867-1913.
[53] Kercheval, A. N., & Zhang, Y. (2015). Modelling high‐frequency limit order book dynamics with support vector machines. Quantitative Finance, 15(8), 1315-1329. · Zbl 1406.91511
[54] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2017). on large‐batch training for deep learning: Generalization gap and sharp minima.
[55] Kim, Y., Jernite, Y., Sontag, D., & Rush, A. (2016). Character‐aware neural language models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 30).
[56] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[57] Kolm, P. N., & Westray, N. (2023). Information content of cross‐sectional and multilevel order flow imbalances: A Bayesian approach. In preparation.
[58] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105.
[59] Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53(6), 1315-1335. · Zbl 0571.90010
[60] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
[61] Li, Y., & Ma, W. (2010). Applications of artificial neural networks in financial economics: A survey. In 2010 International Symposium on Computational Intelligence and Design (Vol. 1), pp. 211-214. IEEE.
[62] Lillo, F., & Farmer, J. D. (2004). The long memory of the efficient market. Studies in Nonlinear Dynamics & Econometrics, 8(3), 1. · Zbl 1081.91595
[63] Liu, L. Y., Patton, A. J., & Sheppard, K. (2015). Does anything beat 5‐minute RV? A comparison of realized measures across multiple asset classes. Journal of Econometrics, 187(1), 293-311. · Zbl 1337.62329
[64] Luo, W., & Yu, F. (2019). Recurrent highway networks with grouped auxiliary memory. IEEE Access, 7, 182037-182049.
[65] Mäkinen, Y., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2019). Forecasting jump arrivals in stock prices: New attention‐based network architecture using limit order book data. Quantitative Finance, 19(12), 2033-2050. · Zbl 1441.91071
[66] Mertens, L., Ciacci, A., Lillo, F., & Livieri, G. (2022). Liquidity fluctuations and the latent dynamics of price impact. Quantitative Finance, 22(1), 149-169. · Zbl 1484.91460
[67] Mnih, V., Heess, N., Graves, A., & Kavukcuoglu, K. (2014). Recurrent models of visual attention. arXiv preprint arXiv:1406.6247.
[68] Ntakaris, A., Magris, M., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2018). Benchmark dataset for mid‐price forecasting of limit order book data with machine learning methods. Journal of Forecasting, 37(8), 852-866.
[69] Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020). Deep learning for financial applications: A survey. Applied Soft Computing, 93, 106384.
[70] Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359.
[71] Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to construct deep recurrent neural networks. arXiv preprint arXiv:1312.6026.
[72] Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2020). Temporal logistic neural bag‐of‐features for financial time series forecasting leveraging limit order book data. Pattern Recognition Letters, 136, 183-189.
[73] Patton, A. J. (2011). Data‐based ranking of realised volatility estimators. Journal of Econometrics, 161(2), 284-303. · Zbl 1441.62831
[74] Pearl, J. (2009). Causality. Cambridge University Press. · Zbl 1188.68291
[75] Rahimikia, E., & Poon, S.‐H. (2023). Machine learning for realised volatility forecasting. SSRN 3707796.
[76] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back‐propagating errors. Nature, 323(6088), 533-536. · Zbl 1369.68284
[77] Sainath, T. N., Vinyals, O., Senior, A., & Sak, H. (2015). Convolutional, long short‐term memory, fully connected deep neural networks. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4580-4584). IEEE.
[78] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117.
[79] Sermanet, P., & LeCun, Y. (2011). Traffic sign recognition with multi‐scale convolutional networks. In Proceedings of the 2011 International Joint Conference on Neural Networks (pp. 2809-2813). IEEE.
[80] Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005-2019. Applied Soft Computing, 90, 106181.
[81] Shi, X., Chen, Z., Wang, H., Yeung, D.‐Y., Wong, W.‐K., & Woo, W.‐C. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, 28.
[82] Sirignano, J. A. (2019). Deep learning for limit order books. Quantitative Finance, 19(4), 549-570. · Zbl 1420.91555
[83] Sirignano, J. A., & Cont, R. (2019). Universal features of price formation in financial markets: Perspectives from deep learning. Quantitative Finance, 19(9), 1449-1459. · Zbl 1420.91433
[84] Stoll, H. R. (1978). The supply of dealer services in securities markets. The Journal of Finance, 33(4), 1133-1151.
[85] Sutton, R. (2019). The bitter lesson. http://www.incompleteideas.net/IncIdeas/BitterLesson.html
[86] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9).
[87] Toth, B., Eisler, Z., Lillo, F., Kockelkoren, J., Bouchaud, J.‐P., & Farmer, J. D. (2012). How does the market react to your order flow?Quantitative Finance, 12(7), 1015-1024.
[88] Tran, D. T., Iosifidis, A., Kanniainen, J., & Gabbouj, M. (2019). Temporal attention‐augmented bilinear network for financial time‐series data analysis. IEEE Transactions on Neural Networks And Learning Systems, 30(5), 1407-1418.
[89] Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017). Forecasting stock prices from the limit order book using convolutional neural networks. In 2017 IEEE 19th Conference on Business Informatics (CBI) (Vol. 1, pp. 7-12). IEEE.
[90] Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2020). Using deep learning for price prediction by exploiting stationary limit order book features. Applied Soft Computing, 93, 106401.
[91] Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3156-3164).
[92] White, H. (1980). A heteroskedasticity‐consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817-838. · Zbl 0459.62051
[93] Wilson, A. G., & Izmailov, P. (2020). Bayesian deep learning and a probabilistic perspective of generalization. arXiv preprint arXiv:2002.08791.
[94] Wong, B. K., & Selvi, Y. (1998). Neural network applications in finance: A review and analysis of literature (1990-1996). Information & Management, 34(3), 129-139.
[95] Xu, K., Gould, M. D., & Howison, S. D. (2018). Multi‐level order‐flow imbalance in a limit order book. Market Microstructure and Liquidity, 04(03n04), 1950011.
[96] Zhang, Z., Lim, B., & Zohren, S. (2021). Deep learning for market by order data. Applied Mathematical Finance, 28(1), 79-95. · Zbl 1475.91347
[97] Zhang, Z., & Zohren, S. (2021). Multi‐horizon forecasting for limit order books: Novel deep learning approaches and hardware acceleration using intelligent processing units. arXiv preprint arXiv:2105.10430.
[98] Zhang, Z., Zohren, S., & Roberts, S. (2018). BDLOB: Bayesian deep convolutional neural networks for limit order books. arXiv preprint arXiv:1811.10041.
[99] Zhang, Z., Zohren, S., & Roberts, S. (2019a). DeepLOB: Deep convolutional neural networks for limit order books. IEEE Transactions on Signal Processing, 67(11), 3001-3012.
[100] Zhang, Z., Zohren, S., & Roberts, S. (2019b). Extending deep learning models for limit order books to quantile regression. arXiv preprint arXiv:1906.04404.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.