×

Uniqueness and regularity of weak solutions of a fluid-rigid body interaction system under the Prodi-Serrin condition. (English) Zbl 1530.35228

Summary: In this article, we study the weak uniqueness and the regularity of the weak solutions of a fluid-structure interaction system. More precisely, we consider the motion of a rigid ball in a viscous incompressible fluid and we assume that the fluid-rigid body system fills the entire space \(\mathbb{R}^3.\) We prove that the corresponding weak solutions that additionally satisfy a classical Prodi-Serrin condition, including a critical one, are unique. We also show that the weak solutions are regular under the Prodi-Serrin conditions, with a smallness condition in the critical case.

MSC:

35Q35 PDEs in connection with fluid mechanics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
35D30 Weak solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] J. Bedrossian and V. Vicol, The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations: An Introduction, volume 225 of Grad. Stud. Math. Providence, RI: American Mathematical Society (AMS), 2022. · Zbl 1529.35001
[2] M. Bravin, Energy equality and uniqueness of weak solutions of a “viscous incompressible fluid + rigid body” system with Navier slip-with-friction conditions in a 2D bounded domain, J. Math. Fluid Mech., 21 (2019), Paper No. 23, 31 pp. · Zbl 1416.35179
[3] P. T. Cumsille Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, Czechoslovak Math. J., 58, 961-992 (2008) · Zbl 1174.35092 · doi:10.1007/s10587-008-0063-2
[4] S. D. M. Ervedoza Maity Tucsnak, Large time behaviour for the motion of a solid in a viscous incompressible fluid, Math. Ann., 385, 631-691 (2023) · Zbl 1512.35469 · doi:10.1007/s00208-021-02351-y
[5] L. G. V. Escauriaza Seregin Šverák, Backward uniqueness for the heat operator in a half-space, St. Petersbg. Math. J., 15, 139-148 (2004) · Zbl 1053.35052 · doi:10.1090/S1061-0022-03-00806-9
[6] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I, Linearized steady problems. volume 38 of Springer Tracts in Natural Philosophy., Springer-Verlag, New York, 1994. · Zbl 0949.35004
[7] G. P. Galdi, Large-time behavior of a rigid body of arbitrary shape in a viscous fluid under the action of prescribed forces and torques, Journal of Mathematical Fluid Mechanics, 25 (2023), Paper No. 43, 11 pp. · Zbl 1536.76030
[8] G. P. Galdi and A. L. Silvestre, Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, In Nonlinear Problems in Mathematical Physics and Related Topics I. In Honor of Professor O. A. Ladyzhenskaya, pages 121-144. New York, NY: Kluwer Academic/Plenum Publishers, 2002. · Zbl 1046.35084
[9] M. K. M. Geissert Götze Hieber, \(L^p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Trans. Amer. Math. Soc., 365, 1393-1439 (2013) · Zbl 1282.35273 · doi:10.1090/S0002-9947-2012-05652-2
[10] O. F. Glass Sueur, Uniqueness results for weak solutions of two-dimensional fluid-solid systems, Arch. Ration. Mech. Anal., 218, 907-944 (2015) · Zbl 1457.35031 · doi:10.1007/s00205-015-0876-8
[11] T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Ration. Mech. Anal., 150, 307-348 (1999) · Zbl 0949.35106 · doi:10.1007/s002050050190
[12] T. Kato, Strong \(L^p\)-solutions of the Navier-Stokes equation in \(R^m\), with applications to weak solutions, Math. Z., 187, 471-480 (1984) · Zbl 0545.35073 · doi:10.1007/BF01174182
[13] H. H. Kozono Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations, Analysis, 16, 255-271 (1996) · Zbl 0864.35082 · doi:10.1524/anly.1996.16.3.255
[14] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by S. Smith. · Zbl 0174.15403
[15] D. Maity and M. Tucsnak, \(L^p-L^q\) maximal regularity for some operators associated with linearized incompressible fluid-rigid body problems, In Mathematical Analysis in Fluid Mechanics-Selected Recent Results, volume 710 of Contemp. Math., 175-201. Amer. Math. Soc., Providence, RI, 2018. · Zbl 1401.76042
[16] D. Maity and M. Tucsnak, Motion of rigid bodies of arbitrary shape in a viscous incompressible fluid: Wellposedness and large time behaviour, Journal of Mathematical Fluid Mechanics, 25 (2023), Paper No. 74, 29 pp. · Zbl 1522.35413
[17] K. Masuda, Weak solutions of Navier-Stokes equations, Tohoku Math. J. (2), 36, 623-646 (1984) · Zbl 0568.35077 · doi:10.2748/tmj/1178228767
[18] A. S. T. N. Mikhaĭlov Shilkin, \(L_{3, \infty}\)-solutions to the 3d-Navier-Stokes system in the domain with a curved boundary, Zap. Nauchn. Semin. POMI, 336, 133-152 (2006) · Zbl 1178.35296 · doi:10.1007/s10958-007-0176-4
[19] B. Muha, Š. Nečasová and A. Radošević, On the regularity of weak solutions to the fluid-rigid body interaction problem, Mathematische Annalen, (2023).
[20] B. Muha, Š. Nečasová and A. Radošević, A uniqueness result for 3D incompressible fluid-rigid body interaction problem, J. Math. Fluid Mech., 23 (2021), Paper No. 1, 39 pp. · Zbl 1460.35296
[21] J. A. V. M. San Martín Starovoitov Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161, 113-147 (2002) · Zbl 1018.76012 · doi:10.1007/s002050100172
[22] G. Seregin, On smoothness of \(L_{3, \infty}\)-solutions to the Navier-Stokes equations up to boundary, Math. Ann., 332, 219-238 (2005) · Zbl 1072.35146 · doi:10.1007/s00208-004-0625-z
[23] D. Serre, Chute libre d’un solide dans un fluide visqueux incompressible. Existence. (Free falling body in a viscous incompressible fluid. Existence), Japan J. Appl. Math., 4, 99-110 (1987) · Zbl 0655.76022 · doi:10.1007/BF03167757
[24] A. L. Silvestre, On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, J. Math. Fluid Mech., 4, 285-326 (2002) · Zbl 1022.35041 · doi:10.1007/PL00012524
[25] T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differ. Equ., 8, 1499-1532 (2003) · Zbl 1101.35356
[26] T. M. Takahashi Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., 6, 53-77 (2004) · Zbl 1054.35061 · doi:10.1007/s00021-003-0083-4
[27] R. Temam, Problèmes Mathématiques en Plasticité, volume 12 of Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science], Gauthier-Villars, Montrouge, 1983. · Zbl 0547.73026
[28] Y. Z. Wang Xin, Analyticity of the semigroup associated with the fluid-rigid body problem and local existence of strong solutions, J. Funct. Anal., 261, 2587-2616 (2011) · Zbl 1238.47039 · doi:10.1016/j.jfa.2011.07.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.