×

Ultra-short sums of trace functions. (English) Zbl 1530.11096

In 1926, the Dutch mathematician Hendrik Kloosterman, introduced the exponential type of sums over finite fields later known as Kloosterman sums. The other famous sums are Gauss and Jacobian. All sums are based on trace functions of primitive roots of unity over a finite field. Kloosterman sums have many applications in analytic number theory and coding theory.
The normalized Kloosterman sums modulo a prime number q is given by \[Kl_{2}(a; q) = \dfrac{1}{\sqrt{q}}\sum_{x\in\mathbb{F}_{q}^{\times}}e(\dfrac{ax+\bar{x}}{q}), \quad e(z) = e^{2i\pi z},\] where \(\bar{x}\) is the multiplicative inverse of \(x\).
The main theorem in the article is as follows:
Theorem (Ultra-short sums of additive characters and Kloosterman sums).
Let \(g \in \mathbb{Z}[X]\) be a fixed monic polynomial of degree \(d \geq 1\). For any field \(K\), denote by \(Z_{g}(K)\) the set of zeros of \(g\) in \(K\), and put \(Zg = Zg(\mathbb{C})\). Let \(K_{g} = \mathbb{Q}(Z_{g})\) be the splitting field of \(g\).
(1) As \(q \longrightarrow \infty\) through prime numbers unramified and totally split in \(K_{g}\), the sums \[ \sum_{x \in \mathbb{Z}_{g}(\mathbb{F}_{q})}e\left(\dfrac{ax}{q}\right) \tag{\(\ast\)} \] parameterized by \(a \in \mathbb{F}_{q}\) become equidistributed in \(\mathbb{C}\) with respect to some explicit probability measure \(\mu_{g}\).
(2) Suppose that \(0 \notin \mathbb{Z}_{g}\). As \(q \longrightarrow \infty\) through prime numbers unramified and totally split in \(K_{g}\), the sums \[ \sum_{x \in \mathbb{Z}_{g}(\mathbb{F}_{q})}Kl_{2}(ax; q) \] parameterized by \(a \in \mathbb{F}_{q}\) become equidistributed in \(C\) with respect to the measure which is the law of the sum of \(d\) independent Sato-Tate random variables.
In this article, the authors have incorporated the topics from modern algebra, analytic number theory, topology and mathematical statistics. Also, they have used the open-source software sagemath to demonstrate the distributions of the sums(*) for different polynomials \(g\) and different primes \(q\) with respect to the probability measure \(\mu_{g}\). This article has also provided some more propositions and examples. I should appreciate the authors for the efforts they have taken to bring out such a great paper.

MSC:

11T23 Exponential sums
11L15 Weyl sums

Software:

SageMath

References:

[1] B. Allombert, Yu. Bilu and A. Pizarro-Madariaga, CM -points on straight lines, in: Analytic Number Theory, Springer, 2015, 1-18. · Zbl 1395.11098
[2] N. Berry, A. Dubickas, N. D. Elkies, B. Poonen and C. Smyth, The conjugate dimen-sion of algebraic numbers, Quart. J. Math. 55 (2004), 237-252. · Zbl 1062.11064
[3] Yu. Bilu, P. Habegger and L. Kühne, No singular modulus is a unit, Int. Math. Res. Notices 2020, 10005-10041. · Zbl 1467.11059
[4] Yu. Bilu, F. Luca and A. Pizarro-Madariaga, Rational products of singular moduli, J. Number Theory 158 (2016), 397-410. · Zbl 1400.11113
[5] Yu. Bilu, D. Masser and U. Zannier, An effective “theorem of André” for CM -points on a plane curve, Math. Proc. Cambridge Philos. Soc. 154 (2013), 145-152. · Zbl 1263.14028
[6] N. Bourbaki, Théories spectrales, Chapitre 2, Springer, 2019. · Zbl 1417.46001
[7] J. Bourgain, Exponential sum estimates over subgroups of Z * q , q arbitrary, J. Anal. Math. 97 (2005), 317-355. · Zbl 1183.11045
[8] D. A. Cox, Primes of the Form x 2 + ny 2 , Wiley, 1989. · Zbl 0701.11001
[9] W. Duke, J. B. Friedlander and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. 141 (1995), 423-441. · Zbl 0840.11003
[10] W. Duke, S. R. Garcia and B. Lutz, The graphic nature of Gaussian periods, Proc. Amer. Math. Soc. 143 (2015), 1849-1863. · Zbl 1329.11083
[11] É. Fouvry, S. Ganguly, E. Kowalski and Ph. Michel, Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions, Comment. Math. Helv. 89 (2014), 979-1014. · Zbl 1306.11079
[12] É. Fouvry, E. Kowalski and Ph. Michel, Algebraic twists of modular forms and Hecke orbits, Geom. Funct. Anal. 25 (2015), 580-657. · Zbl 1344.11036
[13] É. Fouvry, E. Kowalski and Ph. Michel, Algebraic trace functions over the primes, Duke Math. J. 163 (2014), 1683-1736. · Zbl 1318.11103
[14] É. Fouvry, E. Kowalski and Ph. Michel, A study in sums of products, Philos. Trans. Roy. Soc. A 373 (2015), art. 20140309, 26 pp. · Zbl 1397.11128
[15] É. Fouvry, E. Kowalski, Ph. Michel, C. S. Raju, J. Rivat and K. Soundararajan, On short sums of trace functions, Ann. Inst. Fourier (Grenoble) 67 (2017), 423-449. · Zbl 1392.11060
[16] G. Fowler, Triples of singular moduli with rational product, Int. J. Number Theory 16 (2020), 2149-2166. · Zbl 1469.11188
[17] S. R. Garcia, T. Hyde and B. Lutz, Gauss’s hidden menagerie: from cyclotomy to supercharacters, Notices Amer. Math. Soc. 62 (2015), 878-888. · Zbl 1338.11098
[18] E. Hrushovski, Ax’s theorem with an additive character, EMS Surv. Math. Sci. 8 (2021), 179-216. · Zbl 1535.11172
[19] F. Jouve, E. Kowalski and D. Zywina, An explicit integral polynomial whose splitting field has Galois group W (E8), J. Théor. Nombres Bordeaux 20 (2008), 761-782. · Zbl 1200.12003
[20] E. Kowalski, The large sieve, monodromy, and zeta functions of algebraic curves, II: independence of the zeros, Int. Math. Res. Notices 2008, art. rnn091, 57 pp. · Zbl 1233.14018
[21] E. Kowalski, An Introduction to the Representation Theory of Groups, Grad. Texts Math. 155, Amer. Math. Soc., 2014. · Zbl 1320.20008
[22] E. Kowalski and W. F. Sawin, Kloosterman paths and the shape of exponential sums, Compos. Math. 152 (2016), 1489-1516. · Zbl 1419.11134
[23] C. Perret-Gentil, Gaussian distribution of short sums of trace functions over finite fields, Math. Proc. Cambridge Philos. Soc. 163 (2017), 385-422. · Zbl 1405.11102
[24] C. J. Smyth, Additive and multiplicative relations connecting conjugate algebraic num-bers, J. Number Theory 23 (1986), 243-254. · Zbl 0586.12001
[25] Á. Tóth, Roots of quadratic congruences, Int. Math. Res. Notices 2000, 719-739. · Zbl 1134.11339
[26] T. Untrau, Equidistribution of exponential sums indexed by a subgroup of fixed cardi-nality, Math. Proc. Cambridge Philos. Soc. (online, 2023).
[27] Emmanuel Kowalski ETH Zürich -D-MATH
[28] Zürich, Switzerland E-mail: kowalski@math.ethz.ch Théo Untrau Université de Bordeaux CNRS Bordeaux INP, IMB, UMR 5251 F-33400 Talence, France E-mail: theo.untrau@math.u-bordeaux.fr
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.