×

\(L_1\)-\(2\)-type surfaces in 3-dimensional de Sitter and anti de Sitter spaces. (English) Zbl 1529.53063

Let \(\mathbb{R}^4_q\) be the \(4\)-dimensional pseudo-Euclidean space with index \(q\), that is, the real vector space \(\mathbb{R}^4\) equipped with the metric \[ \langle x ,y \rangle =-\sum_{i=1}^{q}x_iy_i+\sum_{i=q+1}^{4}x_iy_i, \] where \(x=(x_1,x_2,x_3,x_4)\), \(y=(y_1,y_2,y_3,y_4)\) and \(1\leqslant q\leqslant 3\). The Lorentzian submanifold \(\mathbb{S}^3_1=\{x\in\mathbb{R}^4_1|\langle x,x\rangle =1\}\) (resp., \(\mathbb{H}^3_1=\{x\in \mathbb{R}^4_2|\langle x,x\rangle=-1\}\)) is called the three-dimensional de Sitter space (resp., anti-de Sitter space). The authors use the notation \(M^3_c\) for these two spaces, explicitly \(M^3_1=\mathbb{S}^3_1\) and \(M^3_{-1}=\mathbb{H}^3_1\). To study the orientable surfaces immersed in \(M^3_c\), they consider a special type of such surfaces, \(L_1\)-\(2\)-type surfaces defined in the preliminaries section. The main theorem of the paper states that if \(M^2_s\) (\(s=0\) for the Riemannian case, and \(s=1\) for the Lorentzian case) is an orientable \(L_1\)-\(2\)-type surface immersed in \(M^3_c\), then \(M^2_s\) has constant principal curvatures if and only if \(M^2_s\) has constant second mean curvature. In order to get the classification results they give in Section 3 four examples of surfaces immersed in \(M^3_c\): totally umbilical surfaces, standard pseudo-Riemannian products, complex circle and B-scroll. Finally, they show that an \(L_1\)-\(2\)-type surface is either an open portion of a standard pseudo-Riemannian product, or a B-scroll over a null curve, or otherwise its mean curvature, its Gaussian curvature and its principal curvatures are all nonconstant.

MSC:

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C40 Global submanifolds
53B25 Local submanifolds
53B30 Local differential geometry of Lorentz metrics, indefinite metrics

References:

[1] Alías, L.J., Ferrández, A., Lucas, P.: 2-type surfaces in \(\mathbb{S}^3_1\) and \(\mathbb{H}_1^3\). Tokyo J. Math. 17, 447-454 (1994) · Zbl 0824.53050
[2] Chen, B.Y.: Total Mean Curvature and Submanifolds of Finite Type. Series in Pure Math, vol. 1. World Scientific, Singapore (1984) · Zbl 0537.53049
[3] Chen, BY; Petrovic, M., On spectral decomposition of immersions of finite type, Bull. Austral. Math. Soc., 44, 117-129 (1991) · Zbl 0771.53033 · doi:10.1017/S0004972700029518
[4] Chen, B. Y., Dillen, F., Verstraelen, L., Vrancken, L.: A variational minimal principle characterizes submanifolds of finite type. C.R. Acad. Sc. Paris 317, 961-965 (1993) · Zbl 0811.53054
[5] Cheng, SY; Yau, ST, Hypersurfaces with constant scalar curvature, Math. Ann., 225, 195-204 (1977) · Zbl 0349.53041 · doi:10.1007/BF01425237
[6] Dajczer, M.; Nomizu, K., On Flat Surfaces in \(\mathbb{S}_1^3\) and \(\mathbb{H}_1^3\), Manifolds and Lie Groups, 71-108 (1981), Birkhäuser: Univ. Notre Dame, Birkhäuser · Zbl 0485.53047 · doi:10.1007/978-1-4612-5987-9_5
[7] Graves, L., Codimension one isometric immersions between Lorentz spaces, Trans. Am. Math. Soc., 252, 367-392 (1979) · Zbl 0415.53041 · doi:10.1090/S0002-9947-1979-0534127-4
[8] Lucas, P.; Ramírez-Ospina, HF, Hypersurfaces in the Lorentz-Minkowski space satisfying \(L_k\psi =A\psi +b\), Geom. Dedicata, 153, 151-175 (2011) · Zbl 1221.53087 · doi:10.1007/s10711-010-9562-z
[9] Lucas, P.; Ramírez-Ospina, HF, Hypersurfaces in non-flat Lorentzian space forms satisfying \(L_k\psi =A\psi +b\), Taiwanese J. Math., 16, 1173-1203 (2012) · Zbl 1254.53100 · doi:10.11650/twjm/1500406685
[10] Lucas, P.; Ramirez-Ospina, HF, Hyperbolic surfaces of \(L_1-2\)-type, Bull. Iran. Math. Soc., 43, 6, 1769-1779 (2017) · Zbl 1406.53015
[11] Lucas, P.; Ramírez-Ospina, HF, Surfaces in \(S^3\) of \(L_1-2\) type, Bull. Malays. Math. Sci. Soc., 41, 4, 1759-1771 (2018) · Zbl 1406.53063 · doi:10.1007/s40840-016-0423-2
[12] Magid, MA, Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba J. Math., 8, 31-54 (1984) · Zbl 0549.53052 · doi:10.21099/tkbjm/1496159942
[13] O’Neill, B.: Semi-Riemannian Geometry With Applications to Relativity, Academic Press, New York London (1983) · Zbl 0531.53051
[14] Xiao, L.: Lorentzian isoparametric hypersurfaces in \(\mathbb{H}_1^3 \). Pacific J. Math. 189, 377-397 (1999) · Zbl 0923.53023
[15] Zhen-Qi, L., Xian-Hua, X.: Space-like isoparametric hypersurfaces in Lorentzian space forms. J. Nanchang Univ. Nat. Sci. Ed. 28 (2004), 113-117. See also Front. Math. China 1, 130-137 (2006) · Zbl 1222.53072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.