×

Global existence and decay rates to a self-consistent chemotaxis-fluid system. (English) Zbl 1529.35529

A new Keller-Segel-(Navier-)Stokes system is considered in two and three space dimensions. The main novelty is the coupling term \(\chi(c)n\nabla c\) (a chemotactic force) in the evolution of fluid equations which makes the system self-consistent, and simultaneously more difficult in the analysis. Extensibility of classical solutions is studied, and a new entropy functional inequality is applied. Existence of global-in-time solutions and their decay rates are established.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35Q35 PDEs in connection with fluid mechanics
35K55 Nonlinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] N. A. N. Bellomo Bellouquid Chouhad, From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid, Math. Models Methods Appl. Sci., 26, 2041-2069 (2016) · Zbl 1353.35038 · doi:10.1142/S0218202516400078
[2] N. A. Y. M. Bellomo Bellouquid Tao Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763 (2015) · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[3] M. K. J. Chae Kang Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst. Ser. A, 33, 2271-2297 (2013) · Zbl 1277.35276 · doi:10.3934/dcds.2013.33.2271
[4] M. K. J. Chae Kang Lee, Global existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Partial Diff. Eqs., 39, 1205-1235 (2014) · Zbl 1304.35481 · doi:10.1080/03605302.2013.852224
[5] J. Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical Geophysics, Oxford Lecture Ser. Math. Appl., 32. The Clarendon Press, Oxford University Press, Oxford, 2006. · Zbl 1205.86001
[6] A. K. A. A. P. A. Chertock Fellner Kurganov Lorz Markowich, Sinking, merging and stationary plumes in a coupled chemotaxis-fuid model: A high-resolution numerical approach, J. Fluid Mech., 694, 155-190 (2012) · Zbl 1250.76191 · doi:10.1017/jfm.2011.534
[7] Y. Choi, Global classical solutions and large-time behavior of the two-phase fluid model, SIAM Journal on Mathematical Analysis, 48, 3090-3122 (2016) · Zbl 1352.35094 · doi:10.1137/15M1037196
[8] P. M. Constantin Ignatova, On the Nernst-Planck-Navier-Stokes system, Arch. Ration. Mech. Anal., 232, 1379-1428 (2019) · Zbl 1472.82037 · doi:10.1007/s00205-018-01345-6
[9] M. A. P. A. Di Francesco Lorz Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. A, 28, 1437-1453 (2010) · Zbl 1276.35103 · doi:10.3934/dcds.2010.28.1437
[10] R. X. Z. Duan Li Xiang, Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system, J. Differential Equations, 263, 6284-6316 (2017) · Zbl 1378.35160 · doi:10.1016/j.jde.2017.07.015
[11] R. A. P. Duan Lorz Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Diff. Equations, 35, 1635-1673 (2010) · Zbl 1275.35005 · doi:10.1080/03605302.2010.497199
[12] R. Z. Duan Xiang, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Not. IMRN, 2014, 1833-1852 (2014) · Zbl 1323.35184 · doi:10.1093/imrn/rns270
[13] S. Ishida, Global existence and boundedness for chemotaxis-Navier-Stokes system with position-dependent sensitivity in 2D bounded domains, Discrete Contin. Dyn. Syst. A, 35, 3463-3482 (2015) · Zbl 1308.35214 · doi:10.3934/dcds.2015.35.3463
[14] H. G. J. Lee Kim, Numerical investigation of falling bacterial plumes caused by bioconvection in a three-dimensional chamber, European Journal of Mechanics - B/Fluids, 52, 120-130 (2015) · Zbl 1408.76608 · doi:10.1016/j.euromechflu.2015.03.002
[15] Y. Y. Li Li, Global boundedness of solutions for the chemotaxis-Navier-Stokes system in \(\mathbb R^2\), J. Differential Equations, 261, 6570-6613 (2016) · Zbl 1354.35071 · doi:10.1016/j.jde.2016.08.045
[16] J. A. Liu Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 643-652 (2011) · Zbl 1236.92013 · doi:10.1016/j.anihpc.2011.04.005
[17] A. Lorz, Coupled chemotaxis fluid model, Math. Mod. Meth. Appl. Sci., 20, 987-1004 (2010) · Zbl 1191.92004 · doi:10.1142/S0218202510004507
[18] Y. Z. Peng Xiang, Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary, Math. Models Methods Appl. Sci., 28, 869-920 (2018) · Zbl 1391.35206 · doi:10.1142/S0218202518500239
[19] Y. Z. Peng Xiang, Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions, J. Differential Equations, 267, 1277-1321 (2019) · Zbl 1412.35174 · doi:10.1016/j.jde.2019.02.007
[20] Y. M. Tao Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. Ser. A, 32, 1901-1914 (2012) · Zbl 1276.35105 · doi:10.3934/dcds.2012.32.1901
[21] Y. M. Tao Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. I. H. Poincaré - AN, 30, 157-178 (2013) · Zbl 1283.35154 · doi:10.1016/j.anihpc.2012.07.002
[22] I. L. C. C. J. R. Tuval Cisneros Dombrowski Wolgemuth Kessler Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Acad. Sci. USA., 102, 2277-2282 (2005) · Zbl 1277.35332
[23] Y. Wang, Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system, Discrete Contin. Dyn. Syst. Ser. S, 13, 329-349 (2020) · Zbl 1442.35481 · doi:10.3934/dcdss.2020019
[24] Y. M. Z. Wang Winkler Xiang, Local energy estimates and global solvability in a three-dimensional chemotaxis-fluid system with prescribed signal on the boundary, Comm. Partial Diff. Equations, 46, 1058-1091 (2021) · Zbl 1470.92044 · doi:10.1080/03605302.2020.1870236
[25] Y. M. Z. Wang Winkler Xiang, A smallness condition ensuring boundedness in a two-dimensional chemotaxis-Navier-Stokes system involving Dirichlet boundary conditions for the signal, Acta Mathematica Sinica, English Series, 38, 985-1001 (2022) · Zbl 1491.92033 · doi:10.1007/s10114-022-1093-7
[26] Y. M. Z. Wang Winkler Xiang, Global mass-preserving solutions to a chemotaxis-fluid model involving Dirichlet boundary conditions for the signal, Analysis and Applications, 20, 141-170 (2022) · Zbl 1484.92013 · doi:10.1142/S0219530521500275
[27] Y. L. Wang Zhao, A 3D self-consistent chemotaxis-fluid system with nonlinear diffusion, J. Differential Equations, 269, 148-179 (2020) · Zbl 1436.35238 · doi:10.1016/j.jde.2019.12.002
[28] M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Part. Diff. Eqs., 37, 319-351 (2012) · Zbl 1236.35192 · doi:10.1080/03605302.2011.591865
[29] M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211, 455-487 (2014) · Zbl 1293.35220 · doi:10.1007/s00205-013-0678-9
[30] P. Yu, Global existence and boundedness in a chemotaxis-Stokes system with arbitrary porous medium diffusion, Math. Methods Appl. Sci., 43, 639-657 (2020) · Zbl 1439.35254 · doi:10.1002/mma.5920
[31] Q. Y. Zhang Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion, J. Differential Equations, 259, 3730-3754 (2015) · Zbl 1320.35352 · doi:10.1016/j.jde.2015.05.012
[32] Q. X. Zhang Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46, 3078-3105 (2014) · Zbl 1444.35011 · doi:10.1137/130936920
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.