×

On the mean-field limit for the consensus-based optimization. (English) Zbl 1527.60077


MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
34F05 Ordinary differential equations and systems with randomness
35Q70 PDEs in connection with mechanics of particles and systems of particles
35Q84 Fokker-Planck equations
60B10 Convergence of probability measures
68W50 Evolutionary algorithms, genetic algorithms (computational aspects)
90C26 Nonconvex programming, global optimization
90C59 Approximation methods and heuristics in mathematical programming

References:

[1] AartsE, KorstJ. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. John Wiley & Sons Inc.; 1989. · Zbl 0674.90059
[2] BackT, FogelDB, MichalewiczZ, eds. Handbook of Evolutionary Computation, 1st ed.Bristol, UK, UK: IOP Publishing Ltd.; 1997. · Zbl 0883.68001
[3] ChristianB, RoliA. Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv. 2003;35(3):268‐308.
[4] GendreauM, PotvinJ‐Y. Handbook of Metaheuristics, 2nd ed.Springer Publishing Company Incorporated; 2010.
[5] NelderJA, RogerM. A simplex method for function minimization. Comput J. 1965;7(4):308‐313. · Zbl 0229.65053
[6] FogelDB. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. John Wiley & Sons; 2006.
[7] HenryHJ. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press; 1992.
[8] JamesK, RussellE. Particle swarm optimization IEEE; 1995:1942‐1948.
[9] MarcoD, ChristianB. Ant colony optimization: a survey. Theor Comput Sci. 2005;344(2‐3):243‐278. · Zbl 1154.90626
[10] CarrilloJA, ChoiY‐P, TotzeckC, TseO. An analytical framework for consensus‐based global optimization method. Math Models Methods Appl Sci. 2018;28(06):1037‐1066. · Zbl 1397.35311
[11] PinnauR, TotzeckC, TseO, MartinS. A consensus‐based model for global optimization and its mean‐field limit. Math Models Methods Appl Sci. 2017;27(01):183‐204. · Zbl 1388.90098
[12] MillerPD. Applied Asymptotic Analysis. American Mathematical Soc; 2006. · Zbl 1101.41031
[13] AmirD, OferZ. Large Deviations Techniques and Applications. Springer‐Verlag Berlin Heidelberg; 2010. · Zbl 1177.60035
[14] FornasierM, KlockT, RiedlK. Consensus‐based optimization methods converge globally in mean‐field law. arXiv preprint arXiv:2103.15130; 2021.
[15] CarrilloJA, JinS, LiL, ZhuY. A consensus‐based global optimization method for high dimensional machine learning problems. ESAIM ‐ Control Optim Calc Var. 2021;27:S5. · Zbl 1480.60195
[16] FornasierM, HuangH, PareschiL, SünnenP. Consensus‐based optimization on the sphere: Convergence to global minimizers and machine learning. J Mach Learn Res. 2021;22(237):1‐55. · Zbl 07626752
[17] FornasierM, HuangH, PareschiL, SünnenP. Consensus‐based optimization on hypersurfaces: well‐posedness and mean‐field limit. Math Models Methods Appl Sci. 2020;30(14):2725‐2751. · Zbl 1467.90039
[18] KimJ, KangM, KimD, HaS‐Y, YangI. A stochastic consensus method for nonconvex optimization on the Stiefel manifold IEEE; 2020:1050‐1057.
[19] FornasierM, HuangH, PareschiL, SünnenP. Anisotropic diffusion in consensus‐based optimization on the sphere. arXiv preprint arXiv:2104.00420; 2021.
[20] ClaudiaT, Marie‐ThereseW. Consensus‐based global optimization with personal best. Math Biosci Eng: MBE. 2020;17(5):6026‐6044. · Zbl 1473.90132
[21] BenfenatiA, BorghiG, PareschiL. Binary interaction methods for high dimensional global optimization and machine learning. arXiv preprint arXiv:2105.02695; 2021.
[22] SaraG, LorenzoP. From particle swarm optimization to consensus based optimization: stochastic modeling and mean‐field limit. Math Models Methods Appl Sci. 2021;31(08):1625‐1657. · Zbl 1473.35570
[23] CiprianiC, HuangH, QiuJ. Zero‐inertia limit: from particle swarm optimization to consensus‐based optimization. SIAM J Math Anal. 2022. · Zbl 1500.90088
[24] TotzeckC. Trends in consensus‐based optimization; 2021. arXiv preprint arXiv:2104.01383.
[25] SznitmanA‐S. Topics in propagation of chaos Springer; 1991:165‐251. · Zbl 0732.60114
[26] FetecauRC, HuangH, SunW. Propagation of chaos for the Keller-Segel equation over bounded domains. J Differ Equ. 2019;266(4):2142‐2174. · Zbl 1421.35381
[27] HuangH, LiuJ‐G, PicklP. On the mean‐field limit for the Vlasov-Poisson-Fokker-Planck system. J Stat Phys. 2020;181(5):1915‐1965. · Zbl 1466.35344
[28] HuangH, QiuJ. The microscopic derivation and well‐posedness of the stochastic Keller-Segel equation. J Nonlinear Sci. 2021;31(1):1‐31. · Zbl 1464.35363
[29] LiuJ‐G, YangR. Propagation of chaos for large Brownian particle system with Coulomb interaction. Res Math Sci. 2016;3(1):1‐33. · Zbl 1355.82025
[30] LiL, LiuJ‐G, YuP. On the mean field limit for Brownian particles with Coulomb interaction in 3D. J Math Phys. 2019;60(11):111501. · Zbl 1431.82019
[31] FournierN, HaurayM, MischlerS. Propagation of chaos for the 2D viscous vortex model. J Eur Math Soc. 2014;16(7):1423‐1466. · Zbl 1299.76040
[32] AldousD. Stopping times and tightness. Ann Probab. 1978:335‐340. · Zbl 0391.60007
[33] BillingsleyP. Convergence of Probability Measures. John Wiley & Sons; 1999. · Zbl 0944.60003
[34] JeanJ, AlbertS. Limit Theorems for Stochastic Processes.Springer Science & Business Media; 2002.
[35] KurtzTG. Equivalence of stochastic equations and martingale problems. 113-130 Springer; 2011. · Zbl 1236.60073
[36] MetivierM. Pathwise differentiability with respect to a parameter of solutions of stochastic differential equations; 1982:490‐502. · Zbl 0482.60060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.