×

On the ubiquity of Arf rings. (English) Zbl 1527.13003

The present paper provides a broad study of Arf rings, along with introducing and studying the concept of weakly Arf rings. The introduction of the paper begins by sketching the origin of Arf rings with roots in the geometry of curves.
For example, the authors give an affirmative answer to a conjecture of Oscar Zariski concerning the equality of the Arf closure and the strict closure. Also, the (weakly) Arf property of certain class of rings, including Nagata idealization, invariant rings, semigroup rings, fibre products, determinantal rings, cyclic pure descends, polynomial extensions and certain localization of certain blow-ups are stdudied.
An Arf ring is Noetherian semilocal ring \(A\) such that \(A_M\) is a Cohen-Macaulay \(1\)-dimensional local ring for all maximal ideal \(M\), and such that
1.
Each integrally closed ideal of positive graded has a principal reduction.
2.
If for \(x,y,z\in A\) with \(x\) a non-zero divisor, \(y/x,z/x\) are integral over \(A\) then \(yz/x\in A\).

The authors of the present paper define for a Noetherian ring \(A\) to be a weakly Arf ring, provided the condition \(2\) above is only required for \(A\) to be satisfied (here \(A\) is not necessarily semilocal and with no Cohen-Macaulay or dimension \(1\) assumption). Thus integrally closed domains and depth zero domains are examples of weakly Arf rings in this setting. For a one dimensional Cohen-Macaulay local ring \(A\) such that its residue field is infinite, or it is analytically irreducible, being weakly Arf and Arf are equivalent. However, the authors discuss examples of one dimensional Cohen-Macaulay local weakly Arf rings which are not Arf.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13B22 Integral closure of commutative rings and ideals
13B30 Rings of fractions and localization for commutative rings

Citations:

Zbl 0228.13008

References:

[1] H. Ananthnarayan, L. L. Avramov, and W. F. Moore, “Connected sums of Gorenstein local rings”, J. Reine Angew. Math. 667 (2012), 149-176. · Zbl 1271.13047 · doi:10.1515/crelle.2011.132
[2] C. Arf, “Une interprétation algébrique de la suite des ordres de multiplicité d’une branche algébrique”, Proc. Lond. Math. Soc. (2) 50 (1948), 256-287. · Zbl 0031.07002 · doi:10.1112/plms/s2-50.4.256
[3] F. Arslan and N. Şahin, “A fast algorithm for constructing Arf closure and a conjecture”, J. Algebra 417 (2014), 148-160. · Zbl 1298.14031 · doi:10.1016/j.jalgebra.2014.06.023
[4] V. Barucci and R. Fröberg, “One-dimensional almost Gorenstein rings”, J. Algebra 188:2 (1997), 418-442. · Zbl 0874.13018 · doi:10.1006/jabr.1996.6837
[5] H. Bass, \[ Algebraic K -theory \], Benjamin, New York, 1968. · Zbl 0174.30302
[6] E. Celikbas, O. Celikbas, S. Goto, and N. Taniguchi, “Generalized Gorenstein Arf rings”, Ark. Mat. 57:1 (2019), 35-53. · Zbl 1419.13045 · doi:10.4310/ARKIV.2019.v57.n1.a3
[7] M. D’Anna, “A construction of Gorenstein rings”, J. Algebra 306:2 (2006), 507-519. · Zbl 1120.13022 · doi:10.1016/j.jalgebra.2005.12.023
[8] M. D’Anna and M. Fontana, “An amalgamated duplication of a ring along an ideal: the basic properties”, J. Algebra Appl. 6:3 (2007), 443-459. · Zbl 1126.13002 · doi:10.1142/S0219498807002326
[9] P. Du Val, “Note on Cahit Arf’s ‘Une interprétation algébrique de la suite des ordres de multiplicité d’une branche algébrique”’, Proc. Lond. Math. Soc. (2) 50 (1948), 288-294. · Zbl 0031.07003 · doi:10.1112/plms/s2-50.4.288
[10] P. Eakin and A. Sathaye, “Prestable ideals”, J. Algebra 41:2 (1976), 439-454. · Zbl 0348.13012 · doi:10.1016/0021-8693(76)90192-7
[11] N. Endo, S. Goto, N. Matsuoka, and Y. Yamamoto, “Efficient generation of ideals in core subalgebras of the polynomialring \[k[t]\] over a field \[k\]”, Proc. Amer. Math. Soc. 148:8 (2020), 3283-3292. · Zbl 1445.13005 · doi:10.1090/proc/15032
[12] N. Endo, S. Goto, and R. Isobe, “Almost Gorenstein rings arising from fiber products”, Canad. Math. Bull. 64:2 (2021), 383-400. · Zbl 1473.13024 · doi:10.4153/S000843952000051X
[13] S. Goto, N. Matsuoka, and T. T. Phuong, “Almost Gorenstein rings”, J. Algebra 379 (2013), 355-381. · Zbl 1279.13035 · doi:10.1016/j.jalgebra.2013.01.025
[14] S. Goto, R. Takahashi, and N. Taniguchi, “Almost Gorenstein rings: towards a theory of higher dimension”, J. Pure Appl. Algebra 219:7 (2015), 2666-2712. · Zbl 1319.13017 · doi:10.1016/j.jpaa.2014.09.022
[15] M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up: an algebraic study, Springer, 1988. · Zbl 0649.13011 · doi:10.1007/978-3-642-61349-4
[16] C. Huneke and I. Swanson, Integral closure of ideals, rings, and modules, Lond. Math. Soc. Lect. Note Ser. 336, Cambridge Univ. Press, 2006. · Zbl 1117.13001
[17] J. Jäger, “Längenberechnung und kanonische Ideale in eindimensionalen Ringen”, Arch. Math. (Basel) 29:5 (1977), 504-512. · Zbl 0374.13006 · doi:10.1007/BF01220445
[18] J. Lipman, “Stable ideals and Arf rings”, Amer. J. Math. 93 (1971), 649-685. · Zbl 0228.13008 · doi:10.2307/2373463
[19] M. Nagata, Local rings, Interscience Tracts Pure Appl. Math. 13, Interscience, New York, 1962. · Zbl 0123.03402
[20] A. J. Parameswaran and V. Srinivas, “A variant of the Noether-Lefschetz theorem: some new examples of unique factorisation domains”, J. Algebraic Geom. 3:1 (1994), 81-115. · Zbl 0814.13013
[21] L. J. Ratliff, Jr., “On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals, I”, Amer. J. Math. 91 (1969), 508-528. · Zbl 0182.06101 · doi:10.2307/2373524
[22] L. J. Ratliff, Jr., “On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals, II”, Amer. J. Math. 92 (1970), 99-144. · Zbl 0198.06003 · doi:10.2307/2373501
[23] L. J. Ratliff, Jr., “Locally quasi-unmixed Noetherian rings and ideals of the principal class”, Pacific J. Math. 52 (1974), 185-205. · Zbl 0285.13004 · doi:10.2140/pjm.1974.52.185
[24] J. C. Rosales, P. A. García-Sánchez, J. I. García-García, and M. B. Branco, “Arf numerical semigroups”, J. Algebra 276:1 (2004), 3-12. · Zbl 1070.20070 · doi:10.1016/j.jalgebra.2004.03.007
[25] S. Sertöz, “On Arf rings”, appendix 3, 416-419 in Collected papers of Cahit Arf, Turkish Math. Soc., Istanbul, 1988.
[26] S. Sertöz, “Arf rings and characters”, Note Mat. 14:2 (1994), 251-261. · Zbl 0896.14011 · doi:10.1285/i15900932v14n2p251
[27] J. Shapiro, “On a construction of Gorenstein rings proposed by M. D’Anna”, J. Algebra 323:4 (2010), 1155-1158. · Zbl 1184.13069 · doi:10.1016/j.jalgebra.2009.12.003
[28] O. Zariski, “Studies in equisingularity, III: Saturation of local rings and equisingularity”, Amer. J. Math. 90 (1968), 961-1023 · Zbl 0189.21405 · doi:10.2307/2373492
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.