×

Dynamics of a critical semilinear Lamé system with memory. (English) Zbl 1526.35082

Summary: This paper is devoted to studying the asymptotic behavior of a semilinear Lamé system with past history and a source term with Sobolev-critical growth. Based on the quasi-stability approach, we show that the dynamical system generated by the weak solutions of the model has a smooth global attractor with finite fractal dimension in an extended energy space.

MSC:

35B41 Attractors
35L53 Initial-boundary value problems for second-order hyperbolic systems
35L71 Second-order semilinear hyperbolic equations
74H40 Long-time behavior of solutions for dynamical problems in solid mechanics
34K24 Synchronization of functional-differential equations
Full Text: DOI

References:

[1] Achenbach, J., Wave Propagation in Elastic Solids (1973), Amsterdam: North-Holland, Amsterdam · Zbl 0268.73005
[2] Araújo, RO; Bocanegra-Rodríguez, LE; Calsavara, BMR; Seminario-Huertas, PN; Sotelo-Pejerrey, A., Global attractors for a system of elasticity with small delays, Math. Methods Appl. Sci., 44, 6911-6922 (2021) · Zbl 1471.35053 · doi:10.1002/mma.7232
[3] Astaburuaga, MA; Charão, RC, Stabilization of the total energy for a system of elasticity with localized dissipation, Differ. Integral Equ., 15, 1357-1376 (2002) · Zbl 1031.35094
[4] Bchatnia, A.; Daoulatli, M., Behavior of the energy for Lamé systems in bounded domains with nonlinear damping and external force, Electron. J. Differ. Equ., 2013, 1-17 (2013) · Zbl 1288.35069
[5] Bchatnia, A.; Guesmia, A., Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain, Math. Control Relat. Fields, 4, 451-463 (2014) · Zbl 1308.35003 · doi:10.3934/mcrf.2014.4.451
[6] Bocanegra-Rodríguez, LE; Jorge Silva, MA; Ma, TF; Seminario-Huertas, PN, Longtime dynamics of a semilinear Lamé system, J. Dyn. Differ. Equ, 33, 1435-1456 (2023) · Zbl 1529.35083 · doi:10.1007/s10884-021-09955-7
[7] Cavalcanti, MM; Fatori, LH; Ma, TF, Attractors for wave equations with degenerate memory, J. Differ. Equ., 260, 56-83 (2016) · Zbl 1323.35106 · doi:10.1016/j.jde.2015.08.050
[8] Cerveny, V., Seismic Ray Theory (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0990.86001 · doi:10.1017/CBO9780511529399
[9] Chepyzhov, VV; Pata, V., Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 50, 269-291 (2006) · Zbl 1155.47041
[10] Chueshov, I., Lasiecka, I.: Von Karman evolution equations: well-posedness and long-time dynamics. In: Springer Monographs in Mathematics. Springer, New York (2010) · Zbl 1298.35001
[11] Chueshov, I., Dynamics of Quasi-stable Dissipative Systems. Universitext (2015), Berlin: Springer, Berlin · Zbl 1362.37001 · doi:10.1007/978-3-319-22903-4
[12] Costa, ALC; Freitas, MM; Wang, R., Asymptotic behavior of non-autonomous Lame systems with subcritical and critical mixed nonlinearities, Nonlinear Anal. Real World Appl., 67 (2022) · Zbl 1491.35034 · doi:10.1016/j.nonrwa.2022.103603
[13] Dafermos, CM, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37, 297-308 (1970) · Zbl 0214.24503 · doi:10.1007/BF00251609
[14] Fabrizio, M.; Lazzari, B., On the existence and the asymptotic stability of solutions for linearly viscoelastic solids, Arch. Ration. Mech. Anal., 116, 139-152 (1991) · Zbl 0766.73013 · doi:10.1007/BF00375589
[15] Grasselli, M.; Pata, V.; Lorenzi, A.; Rus, B., Uniform attractors of nonautonomous dynamical systems with memory, Evolution Equations, Semigroups and Functional Analysis. Progress in Nonlinear Differential Equations and their Applications, 155-178 (2002), Basel: Birkhüser, Basel · Zbl 1049.35050 · doi:10.1007/978-3-0348-8221-7_9
[16] Hale, JK, Asymptotic Behavior of Dissipative Systems (2010), Providence: American Mathematical Society, Providence · doi:10.1090/surv/025
[17] Horn, M.A.: Stabilization of the dynamic system of elasticity by nonlinear boundary feedback. In: Hoffmann, K.-H., Leugering, G., Troltzsch, F. (eds.) Optimal Control of Partial Differential Equations, International Conference in Chemnitz, Germany, April 20-25, 1998. Springer, Basel (1999) · Zbl 0938.35024
[18] Love, AEH, A Treatise on Mathematical Theory of Elasticity (1892), Cambridge: Cambridge University Press, Cambridge · JFM 24.0939.04
[19] Ma, TF; Mesquita, JG; Seminario-Huertas, PN, Smooth dynamics of weakly damped Lamé systems with delay, SIAM J. Math. Anal., 53, 3759-3771 (2021) · Zbl 1469.35050 · doi:10.1137/20M1374948
[20] Pata, V., Attractors for a damped wave equation on \(\mathbb{R}^3\) with linear memory, Math. Methods Appl. Sci., 23, 633-653 (2000) · Zbl 0959.35024 · doi:10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C
[21] Pata, V., Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77, 333-360 (2009) · Zbl 1205.45010 · doi:10.1007/s00032-009-0098-3
[22] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (2012), Berlin: Springer, Berlin · Zbl 0516.47023
[23] Pujol, J., Elastic Wave Propagation and Generation in Seismology (2003), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511610127
[24] Teodorescu, PP, Treatise on Classical Elasticity, Theory and Related Problems (2013), Dordrecht: Springer, Dordrecht · Zbl 1276.74002 · doi:10.1007/978-94-007-2616-1
[25] Yamamoto, K., Exponential energy decay of solutions of elastic wave equations with the Dirichlet condition, Math. Scand., 65, 206-220 (1989) · Zbl 0757.73013 · doi:10.7146/math.scand.a-12279
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.