×

Transposed Poisson structures on Witt type algebras. (English) Zbl 1526.17039

Summary: We describe \(\frac{1}{2}\)-derivations, and hence transposed Poisson algebra structures, on Witt type Lie algebras \(V(f)\), where \(f : \Gamma\to\mathbb{C}\) is non-trivial and \(f(0) = 0\). More precisely, if \(|f(\Gamma)| \geq 4\), then all the transposed Poisson algebra structures on \(V(f)\) are mutations of the group algebra structure \((V(f), \cdot)\) on \(V(f)\). If \(|f(\Gamma)|=3\), then we obtain the direct sum of 3 subspaces of \(V(f)\), corresponding to cosets of \(\Gamma_0\) in \(\Gamma\), with multiplications being different mutations of \(\cdot\). The case \(|f(\Gamma)|=2\) is more complicated, but also deals with certain mutations of \(\cdot\). As a consequence, new Lie algebras that admit non-trivial Hom-Lie algebra structures are found.

MSC:

17B63 Poisson algebras
17A30 Nonassociative algebras satisfying other identities
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
17B61 Hom-Lie and related algebras

References:

[1] Albuquerque, H.; Barreiro, E.; Benayadi, S.; Boucetta, M.; Sánchez, J. M., Poisson algebras and symmetric Leibniz bialgebra structures on oscillator Lie algebras, J. Geom. Phys., 160, Article 103939 pp. (2021) · Zbl 1505.17014
[2] Bai, C.; Bai, R.; Guo, L.; Wu, Y., Transposed Poisson algebras, Novikov-Poisson algebras, and 3-Lie algebras · Zbl 1530.17022
[3] C. Bai, G. Liu, A bialgebra theory for transposed Poisson algebras via anti-pre-Lie bialgebras and anti-pre-Lie-Poisson bialgebras, preprint. · Zbl 07885853
[4] Beites, P. D.; Ferreira, B. L.M.; Kaygorodov, I., Transposed Poisson structures · Zbl 07812537
[5] Benayadi, S.; Chopp, M., Lie-admissible structures on Witt type algebras, J. Geom. Phys., 61, 2, 541-559 (2011) · Zbl 1267.17039
[6] Đoković, D.; Zhao, K., Derivations, isomorphisms, and second cohomology of generalized Witt algebras, Trans. Am. Math. Soc., 350, 2, 643-664 (1998) · Zbl 0952.17015
[7] Ferreira, B. L.M.; Kaygorodov, I.; Lopatkin, V., \( \frac{ 1}{ 2} \)-derivations of Lie algebras and transposed Poisson algebras, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 115, 142 (2021) · Zbl 1507.17037
[8] Filippov, V., δ-derivations of Lie algebras, Sib. Math. J., 39, 6, 1218-1230 (1998) · Zbl 0936.17020
[9] Jaworska-Pastuszak, A.; Pogorzały, Z., Poisson structures for canonical algebras, J. Geom. Phys., 148, Article 103564 pp. (2020) · Zbl 1487.17045
[10] Iohara, K.; Mathieu, O., Classification of simple Lie algebras on a lattice, Proc. Lond. Math. Soc., 106, 3, 508-564 (2013) · Zbl 1328.17011
[11] Kaygorodov, I., δ-superderivations of semisimple finite-dimensional Jordan superalgebras, Math. Notes, 91, 1-2, 187-197 (2012) · Zbl 1376.17043
[12] Kaygorodov, I.; Khrypchenko, M., Poisson structures on finitary incidence algebras, J. Algebra, 578, 402-420 (2021) · Zbl 1481.17031
[13] Kaygorodov, I.; Khrypchenko, M., Transposed Poisson structures on block Lie algebras and superalgebras, Linear Algebra Appl., 656, 167-197 (2023) · Zbl 1516.17002
[14] Kaygorodov, I.; Lopatkin, V.; Zhang, Z., Transposed Poisson structures on Galilean and solvable Lie algebras · Zbl 1528.17018
[15] Laraiedh, I.; Silvestrov, S., Transposed Hom-Poisson and Hom-pre-Lie Poisson algebras and bialgebras
[16] Ma, T.; Li, B., Transposed BiHom-Poisson algebras, Commun. Algebra, 51, 2, 528-551 (2023) · Zbl 1533.17026
[17] Yao, Y.; Ye, Y.; Zhang, P., Quiver Poisson algebras, J. Algebra, 312, 2, 570-589 (2007) · Zbl 1180.17007
[18] Yu, R. W.T., Algèbre de Lie de type Witt, Commun. Algebra, 25, 5, 1471-1484 (1997) · Zbl 0878.17027
[19] Yuan, L.; Hua, Q., \( \frac{ 1}{ 2} \)-(bi)derivations and transposed Poisson algebra structures on Lie algebras, (Linear and Multilinear Algebra (2021))
[20] Zusmanovich, P., On δ-derivations of Lie algebras and superalgebras, J. Algebra, 324, 12, 3470-3486 (2010) · Zbl 1218.17011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.