×

The ratios conjecture and upper bounds for negative moments of \(L\)-functions over function fields. (English) Zbl 1526.11046

This paper considers the Ratios Conjecture of Conrey, Farmer and Zirnbauer [B. Conrey et al., Commun. Number Theory Phys. 2, No. 3, 593–636 (2008; Zbl 1178.11056)] in the context of \(L\)-series defined over a fixed polynomial ring \(\mathbb{F}_q[x]\). We let \(\mathcal{H}_{2g+1}\) be the ensemble of monic, square-free polynomials of degree \(2g+1\), and if \(D\in\mathcal{H}_{2g+1}\) we write \(\chi_D\) for the quadratic character modulo \(D\). In this context the Ratios Conjecture predicts the asymptotic behaviour, as \(g\to\infty\), of \[ \frac{1}{|\mathcal{H}_{2g+1}|}\sum_{D\in\mathcal{H}_{2g+1}} \frac{\prod_{\alpha\in\mathcal{A}}L(\tfrac12+\alpha,\chi_D)} {\prod_{\beta\in\mathcal{B}}L(\tfrac12+\beta,\chi_D)}, \] for given sets \(\mathcal{A}=\{\alpha_1,\dots,\alpha_k\}\) and \(\mathcal{B}=\{\beta_1,\dots,\beta_k\}\) satisfying suitable constraints. In particular it is natural to assume that \(\mathrm{Re}(\beta_j)\gg g^{-1}\), so that \(\tfrac12+\beta_j\) is not too close to a zero of \(L(s,\chi_D)\).
The paper succeeds in proving the conjectured asymptotic formula, saving a power of \(q^g\), when \(k=1,2\) or 3. However it is necessary to impose further restrictions on the sets \(\mathcal{A}\) and \(\mathcal{B}\). In particular one requires a lower bound \(\mathrm{Re}(\beta_j)\gg g^{-1/2k+\varepsilon}\) for each \(j\). The hardest part of the argument lies in controlling negative moments of \(L(s,\chi_D)\). This is achieved by adapting the ideas of K. Soundararajan [Ann. Math. (2) 170, No. 2, 981–993 (2009; Zbl 1251.11058)] and A. J. Harper [Sharp conditional bounds for moments of the Riemann zeta function”, Preprint, arXiv:1305.4618], who handled the Riemann Zeta-function subject to the Riemann Hypothesis. Thus for example it is shown for any fixed \(m>\tfrac12\) that \[ \frac{1}{|\mathcal{H}_{2g+1}|}\sum_{D\in\mathcal{H}_{2g+1}} \frac{1}{|L(\tfrac12+\beta,\chi_D)|^m}\ll\beta^{-m(m-1)/2}(\log g)^{m(m+1)/2}, \] for \(\beta\in(0,\tfrac12)\) with \(\beta\gg g^{-1/2m+\varepsilon}\).

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11R59 Zeta functions and \(L\)-functions of function fields
11M50 Relations with random matrices
11T99 Finite fields and commutative rings (number-theoretic aspects)
11M38 Zeta and \(L\)-functions in characteristic \(p\)

References:

[1] Altu\u{g}, Salim Ali, Metaplectic Ramanujan conjecture over function fields with applications to quadratic forms, Int. Math. Res. Not. IMRN, 3465-3558 (2014) · Zbl 1296.11045 · doi:10.1093/imrn/rnt047
[2] Andrade, J. C., Conjectures for the integral moments and ratios of \(L\)-functions over function fields, J. Number Theory, 102-148 (2014) · Zbl 1318.11083 · doi:10.1016/j.jnt.2014.02.019
[3] Berry, M. V., Clusters of near-degenerate levels dominate negative moments of spectral determinants, J. Phys. A, L1-L6 (2002) · Zbl 1012.81015 · doi:10.1088/0305-4470/35/1/101
[4] E. B. Bogomolny and J. P. Keating, Gutzwiller’s trace formula and spectral statistics: beyond the diagonal approximation, Phys. Rev. Lett. 77 (1996), 1472-1475. · Zbl 1182.81034
[5] Borodin, A., Averages of characteristic polynomials in random matrix theory, Comm. Pure Appl. Math., 161-253 (2006) · Zbl 1155.15304 · doi:10.1002/cpa.20092
[6] H. M. Bui, N. Evans, S. Lester, and K. Pratt, Weighted central limit theorems for central values of \(L\)-functions, Preprint, 2109.06829.
[7] Bui, H. M., Zeros of quadratic Dirichlet \(L\)-functions in the hyperelliptic ensemble, Trans. Amer. Math. Soc., 8013-8045 (2018) · Zbl 1446.11154 · doi:10.1090/tran/7317
[8] Bui, H. M., Hybrid Euler-Hadamard product for quadratic Dirichlet \(L\)-functions in function fields, Proc. Lond. Math. Soc. (3), 65-99 (2018) · Zbl 1451.11100 · doi:10.1112/plms.12123
[9] Bui, Hung M., Type-I contributions to the one and two level densities of quadratic Dirichlet \(L\)-functions over function fields, J. Number Theory, 389-423 (2021) · Zbl 1469.11451 · doi:10.1016/j.jnt.2020.10.021
[10] Carneiro, Emanuel, Bounding \(\zeta (s)\) in the critical strip, J. Number Theory, 363-384 (2011) · Zbl 1231.11097 · doi:10.1016/j.jnt.2010.08.002
[11] Carneiro, Emanuel, Gaussian subordination for the Beurling-Selberg extremal problem, Trans. Amer. Math. Soc., 3493-3534 (2013) · Zbl 1276.41018 · doi:10.1090/S0002-9947-2013-05716-9
[12] M. Cech, Ratios Conjecture and 1-level density for real Dirichlet characters, Preprint, 2110.04409.
[13] Conrey, J. B., Integral moments of \(L\)-functions, Proc. London Math. Soc. (3), 33-104 (2005) · Zbl 1075.11058 · doi:10.1112/S0024611504015175
[14] Conrey, Brian, Autocorrelation of ratios of \(L\)-functions, Commun. Number Theory Phys., 593-636 (2008) · Zbl 1178.11056 · doi:10.4310/CNTP.2008.v2.n3.a4
[15] Conrey, J. B., Averages of ratios of characteristic polynomials for the compact classical groups, Int. Math. Res. Not., 397-431 (2005) · Zbl 1156.11334 · doi:10.1155/IMRN.2005.397
[16] Conrey, J. B., Applications of the \(L\)-functions ratios conjectures, Proc. Lond. Math. Soc. (3), 594-646 (2007) · Zbl 1183.11050 · doi:10.1112/plms/pdl021
[17] David, Chantal, Nonvanishing for cubic \(L\)-functions, Forum Math. Sigma, Paper No. e69, 58 pp. (2021) · Zbl 1495.11099 · doi:10.1017/fms.2021.62
[18] Faifman, Dmitry, Statistics of the zeros of zeta functions in families of hyperelliptic curves over a finite field, Compos. Math., 81-101 (2010) · Zbl 1245.14022 · doi:10.1112/S0010437X09004308
[19] Farmer, David W., Long mollifiers of the Riemann zeta-function, Mathematika, 71-87 (1993) · Zbl 0783.11031 · doi:10.1112/S0025579300013723
[20] A. Florea, Negative moments of \(L\)-functions with small shifts over function fields, Preprint, 2111.10477.
[21] Florea, Alexandra, The fourth moment of quadratic Dirichlet \(L\)-functions over function fields, Geom. Funct. Anal., 541-595 (2017) · Zbl 1428.11155 · doi:10.1007/s00039-017-0409-8
[22] Florea, Alexandra, The second and third moment of \(L(1/2,\chi )\) in the hyperelliptic ensemble, Forum Math., 873-892 (2017) · Zbl 1429.11152 · doi:10.1515/forum-2015-0152
[23] Florea, Alexandra M., Improving the error term in the mean value of \(L(\frac 12,\chi )\) in the hyperelliptic ensemble, Int. Math. Res. Not. IMRN, 6119-6148 (2017) · Zbl 1405.11104 · doi:10.1093/imrn/rnv387
[24] Forrester, P. J., Singularity dominated strong fluctuations for some random matrix averages, Comm. Math. Phys., 119-131 (2004) · Zbl 1087.82012 · doi:10.1007/s00220-004-1121-8
[25] Gonek, S. M., On negative moments of the Riemann zeta-function, Mathematika, 71-88 (1989) · Zbl 0673.10032 · doi:10.1112/S0025579300013589
[26] Hayes, D. R., The expression of a polynomial as a sum of three irreducibles, Acta Arith., 461-488 (1966) · Zbl 0151.03902 · doi:10.4064/aa-11-4-461-488
[27] A. Harper, Sharp conditional bounds for moments of the Riemann zeta function, Preprint, 1305.4618.
[28] Heap, Winston, Lower bounds for moments of zeta and \(L\)-functions revisited, Mathematika, 1-14 (2022) · Zbl 1523.11150 · doi:10.1112/mtk.12115
[29] Heath-Brown, D. R., The fourth power moment of the Riemann zeta function, Proc. London Math. Soc. (3), 385-422 (1979) · Zbl 0403.10018 · doi:10.1112/plms/s3-38.3.385
[30] Huckleberry, A., Haar expectations of ratios of random characteristic polynomials, Complex Anal. Synerg., Paper No. 1, 73 pp. (2016) · Zbl 1339.32008 · doi:10.1186/s40627-015-0005-3
[31] Katz, Nicholas M., Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, xii+419 pp. (1999), American Mathematical Society, Providence, RI · Zbl 0958.11004 · doi:10.1090/coll/045
[32] Katz, Nicholas M., Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.), 1-26 (1999) · Zbl 0921.11047 · doi:10.1090/S0273-0979-99-00766-1
[33] Keating, J. P., Random matrix theory and \(L\)-functions at \(s=1/2\), Comm. Math. Phys., 91-110 (2000) · Zbl 1051.11047 · doi:10.1007/s002200000262
[34] Keating, J. P., Random matrix theory and \(\zeta (1/2+it)\), Comm. Math. Phys., 57-89 (2000) · Zbl 1051.11048 · doi:10.1007/s002200000261
[35] Kowalski, E., Mollification of the fourth moment of automorphic \(L\)-functions and arithmetic applications, Invent. Math., 95-151 (2000) · Zbl 1054.11026 · doi:10.1007/s002220000086
[36] Lester, Stephen, Signs of Fourier coefficients of half-integral weight modular forms, Math. Ann., 1553-1604 (2021) · Zbl 1467.11047 · doi:10.1007/s00208-020-02123-0
[37] Montgomery, H. L., Analytic number theory. The pair correlation of zeros of the zeta function, 181-193 (1972), Amer. Math. Soc., Providence, R.I. · Zbl 0268.10023
[38] Radziwi\l \l , Maksym, Moments and distribution of central \(L\)-values of quadratic twists of elliptic curves, Invent. Math., 1029-1068 (2015) · Zbl 1396.11098 · doi:10.1007/s00222-015-0582-z
[39] Rudnick, Ze\'{e}v, Traces of high powers of the Frobenius class in the hyperelliptic ensemble, Acta Arith., 81-99 (2010) · Zbl 1260.11057 · doi:10.4064/aa143-1-5
[40] Soundararajan, Kannan, Moments of the Riemann zeta function, Ann. of Math. (2), 981-993 (2009) · Zbl 1251.11058 · doi:10.4007/annals.2009.170.981
[41] Soundararajan, K., Nonvanishing of quadratic Dirichlet \(L\)-functions at \(s=\frac 12\), Ann. of Math. (2), 447-488 (2000) · Zbl 0964.11034 · doi:10.2307/2661390
[42] Soundararajan, K., The second moment of quadratic twists of modular \(L\)-functions, J. Eur. Math. Soc. (JEMS), 1097-1116 (2010) · Zbl 1213.11165 · doi:10.4171/JEMS/224
[43] Young, Matthew P., The fourth moment of Dirichlet \(L\)-functions, Ann. of Math. (2), 1-50 (2011) · Zbl 1296.11112 · doi:10.4007/annals.2011.173.1.1
[44] Weil, Andr\'{e}, Sur les courbes alg\'{e}briques et les vari\'{e}t\'{e}s qui s’en d\'{e}duisent, Publ. Inst. Math. Univ. Strasbourg, iv+85 pp. (1948), Hermann & Cie, Paris · Zbl 0036.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.