×

Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations. (English) Zbl 1524.35485

Summary: We study compressible isentropic Navier-Stokes-Poisson equations in \(\mathbb{R}^3\). With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B44 Blow-up in context of PDEs
Full Text: DOI

References:

[1] Cho, Y.; Jin, B. J., Blow-up of viscous heat-conducting compressible flows, J. Math. Anal. Appl., 320, 819-826 (2006) · Zbl 1121.35110 · doi:10.1016/j.jmaa.2005.08.005
[2] Dong, J.; Ju, Q., Blow-up of smooth solutions to compressible quantum Navier-Stokes equations, Sci. Sin., Math., 50, 873-884 (2020) · Zbl 1499.35117 · doi:10.1360/N012018-00169
[3] Dong, J.; Zhu, J.; Wang, Y., Blow-up for the compressible isentropic Navier-Stokes-Poisson equations, Czech. Math. J., 70, 9-19 (2020) · Zbl 1513.35449 · doi:10.21136/CMJ.2019.0156-18
[4] Gamba, I. M.; Gualdani, M. P.; Zhang, P., On the blowing up of solutions to quantum hydrodynamic models on bounded domains, Monatsh Math., 157, 37-54 (2009) · Zbl 1173.35106 · doi:10.1007/s00605-009-0092-4
[5] Guo, B.; Wang, G., Blow-up of the smooth solution to quantum hydrodynamic models in ℝ^d, J. Differ. Equations, 261, 3815-3842 (2016) · Zbl 1354.35123 · doi:10.1016/j.jde.2016.06.007
[6] B. Guo, G. Wang: Blow-up of solutions to quantum hydrodynamic models in half space. J. Math. Phys. 58 (2017), Article ID 031505, 11 pages. · Zbl 1359.76348
[7] Jiu, Q.; Wang, Y.; Xin, Z., Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities, J. Differ. Equations, 259, 2981-3003 (2015) · Zbl 1319.35194 · doi:10.1016/j.jde.2015.04.007
[8] Lai, N-A, Blow up of classical solutions to the isentropic compressible Navier-Stokes equations, Nonlinear Anal., Real World Appl., 25, 112-117 (2015) · Zbl 1327.35299 · doi:10.1016/j.nonrwa.2015.03.005
[9] Lei, Z.; Du, Y.; Zhang, Q., Singularities of solutions to compressible Euler equations with vacuum, Math. Res. Lett., 20, 41-50 (2013) · Zbl 1284.35329 · doi:10.4310/MRL.2013.v20.n1.a4
[10] Rozanova, O., Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations, J. Differ. Equations, 245, 1762-1774 (2008) · Zbl 1154.35070 · doi:10.1016/j.jde.2008.07.007
[11] Wang, G.; Guo, B.; Fang, S., Blow-up of the smooth solutions to the compressible Navier-Stokes equations, Math. Methods Appl. Sci., 40, 5262-5272 (2017) · Zbl 1383.35034 · doi:10.1002/mma.4384
[12] Xin, Z., Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Commun. Pure Appl. Math., 51, 229-240 (1998) · Zbl 0937.35134 · doi:10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
[13] Xin, Z.; Yan, W., On blowup of classical solutions to the compressible Navier-Stokes equations, Commun. Math. Phys., 321, 529-541 (2013) · Zbl 1287.35059 · doi:10.1007/s00220-012-1610-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.