×

Volume approximation of strongly \(\mathbb{C} \)-convex domains by random polyhedra. (English) Zbl 1523.60029

Summary: Polyhedral-type approximations of convex-like domains in \(\mathbb{C}^d\) have been considered recently by the second author. In particular, the decay rate of the error in optimal volume approximation as a function of the number of facets has been obtained. In this article, we take these studies further by investigating polyhedra constructed using random points (Poisson or binomial process) on the boundary of a strongly \(\mathbb{C} \)-convex domain. We determine the rate of error in volume approximation of the domain by random polyhedra, and conjecture the precise value of the minimal limiting constant. Analogous to the real case, the exponent appearing in the error rate of random volume approximation coincides with that of optimal volume approximation, and can be interpreted in terms of the Hausdorff dimension of a naturally-occurring metric space. Moreover, the limiting constant is conjectured to depend on the Möbius-Fefferman measure, which is a complex analogue of the Blaschke surface area measure. Finally, we also prove \(L^1\)-convergence, variance bounds, and normal approximation.

MSC:

60D05 Geometric probability and stochastic geometry
32F17 Other notions of convexity in relation to several complex variables
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60F05 Central limit and other weak theorems

References:

[1] Andersson, M.; Passare, M.; Sigurdsson, R., Complex Convexity and Analytic Functionals, vol. 225 (2012), Birkhäuser
[2] Barrett, D. E., Holomorphic projection and duality for domains in complex projective space, Trans. Am. Math. Soc., 368, 2, 827-850 (2016) · Zbl 1338.32003
[3] Besau, F.; Thäle, C., Asymptotic normality for random polytopes in non-Euclidean geometries, Trans. Am. Math. Soc., 373, 12, 8911-8941 (2020) · Zbl 1468.52006
[4] Besau, F.; Rosen, D.; Thäle, C., Random inscribed polytopes in projective geometries, Math. Ann., 381, 3-4, 1345-1372 (2021) · Zbl 1486.52007
[5] Bolt, M., A geometric characterization: complex ellipsoids and the Bochner-Martinelli kernel, Ill. J. Math., 49, 3, 811-826 (2005) · Zbl 1091.32003
[6] Böröczky, K.; Reitzner, M., Approximation of smooth convex bodies by random circumscribed polytopes, Ann. Appl. Probab., 14, 1, 239-273 (2004) · Zbl 1049.60009
[7] Bronstein, E. M., Approximation of convex sets by polytopes, J. Math. Sci., 153, 6, 727-762 (2008) · Zbl 1161.52001
[8] Calka, P.; Yukich, J. E., Variance asymptotics for random polytopes in smooth convex bodies, Probab. Theory Relat. Fields, 158, 1, 435-463 (2014) · Zbl 1291.60043
[9] Chatterjee, S., A new method of normal approximation, Ann. Probab., 36, 4, 1584-1610 (2008) · Zbl 1159.62009
[10] Flatto, L.; Newman, D. J., Random coverings, Acta Math., 138, 241-264 (1977) · Zbl 0363.60010
[11] Glasauer, S.; Schneider, R., Asymptotic approximation of smooth convex bodies by polytopes, Forum Math., 8, 363-378 (1996) · Zbl 0855.52001
[12] Grote, J.; Werner, E., Approximation of smooth convex bodies by random polytopes, Electron. J. Probab., 23, 1-21 (2018) · Zbl 1395.52008
[13] Gruber, P. M., Aspects of approximation of convex bodies, (Gruber, P. M.; Willis, J. M., Handbook of Convex Geometry (1993), Elsevier), 319-345, Chapter 1.10 · Zbl 0791.52007
[14] Gruber, P. M., Asymptotic estimates for best and stepwise approximation of convex bodies II, Forum Math., 5, 521-538 (1993) · Zbl 0788.41020
[15] Gupta, P., Volume approximations of strongly pseudoconvex domains, J. Geom. Anal., 27, 2, 1029-1064 (2017) · Zbl 1386.32029
[16] P. Gupta, Optimal polyhedral approximations of strongly \(\mathbb{C} \)-convex domains, in preparation.
[17] Hall, P., On the coverage of k-dimensional space by k-dimensional spheres, Ann. Probab., 13, 3, 991-1002 (1985) · Zbl 0582.60015
[18] Hug, D., Random polytopes, (Stochastic Geometry, Spatial Statistics and Random Fields (2013), Springer), 205-238 · Zbl 1275.60017
[19] Janson, S., Random coverings in several dimensions, Acta Math., 156, 83-118 (1986) · Zbl 0597.60014
[20] Krantz, S. G.; Parks, H. R., Geometric Integration Theory (2008), Springer · Zbl 1149.28001
[21] Lachièze-Rey, R.; Peccati, G., New Berry-Esseen bounds for functionals of binomial point processes, Ann. Appl. Probab., 27, 4, 1992-2031 (2017) · Zbl 1374.60023
[22] Lanzani, L.; Stein, E. M., The Cauchy integral in \(\mathbb{C}^n\) for domains with minimal smoothness, Adv. Math., 264, 776-830 (2014) · Zbl 1317.32007
[23] Last, G.; Penrose, M., Lectures on the Poisson Process, vol. 7 (2017), Cambridge University Press
[24] Last, G.; Peccati, G.; Schulte, M., Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization, Probab. Theory Relat. Fields, 165, 3, 667-723 (2016) · Zbl 1347.60012
[25] Lempert, L., Intrinsic distances and holomorphic retracts, (Complex Analysis and Applications ’81. Complex Analysis and Applications ’81, Varna, 1981 (1984), Publ. House Bulgar. Acad. Sci.: Publ. House Bulgar. Acad. Sci. Sofia), 341-364 · Zbl 0583.32060
[26] Ludwig, M., Asymptotic approximation of smooth convex bodies by general polytopes, Mathematika, 46, 1, 103-125 (1999) · Zbl 0992.52002
[27] Ludwig, M.; Schütt, C.; Werner, E., Approximation of the Euclidean ball by polytopes, Stud. Math., 173, 1, 1-18 (2006) · Zbl 1100.52001
[28] McClure, D. E.; Vitale, R. A., Polygonal approximation of plane convex bodies, J. Math. Anal. Appl., 51, 2, 326-358 (1975) · Zbl 0315.52004
[29] Mitrea, D.; Mitrea, I.; Mitrea, M., Geometric Harmonic Analysis I: A Sharp Divergence Theorem with Nontangential Pointwise Traces, vol. 72 (2022), Springer Nature · Zbl 1517.42001
[30] Müller, J. S., Approximation of a ball by random polytopes, J. Approx. Theory, 63, 2, 198-209 (1990) · Zbl 0736.41027
[31] Peccati, G.; Reitzner, M., Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Itô Chaos Expansions and Stochastic Geometry, vol. 7 (2016), Springer · Zbl 1350.60005
[32] Reitzner, M., Random points on the boundary of smooth convex bodies, Trans. Am. Math. Soc., 354, 6, 2243-2278 (2002) · Zbl 0993.60012
[33] Reitzner, M., Random polytopes and the Efron-Stein jackknife inequality, Ann. Probab., 31, 4, 2136-2166 (2003) · Zbl 1058.60010
[34] Reitzner, M., Random polytopes, (Kendall, W. S.; Molchanov, I., New Perspectives in Stochastic Geometry (2010), Oxford University Press: Oxford University Press Oxford), 45-76, Chapter 2 · Zbl 1202.60025
[35] Reznikov, A.; Saff, E. B., The covering radius of randomly distributed points on a manifold, Int. Math. Res. Not., 2016, 19, 6065-6094 (2016) · Zbl 1404.60005
[36] Richardson, R. M.; Vu, V. H.; Wu, L., Random inscribing polytopes, Eur. J. Comb., 28, 8, 2057-2071 (2007) · Zbl 1165.60008
[37] Richardson, R. M.; Vu, V. H.; Wu, L., An inscribing model for random polytopes, Discrete Comput. Geom., 39, 1, 469-499 (2008) · Zbl 1148.52006
[38] Roccaforte, R., The volume of non-uniform tubular neighborhoods and an application to the n-dimensional Szegő theorem, J. Math. Anal. Appl., 398, 1, 61-67 (2013) · Zbl 1254.53011
[39] Rudin, W., Function Theory in the Unit Ball of \(\mathbb{C}^n (2008)\), Springer Science & Business Media · Zbl 1139.32001
[40] Schneider, R., Random approximation of convex sets, J. Microsc., 151, 3, 211-227 (1988) · Zbl 1256.52004
[41] Schütt, C.; Werner, E., Random polytopes with vertices on the boundary of a convex body, C. R. Acad. Sci. Paris Sér. I Math., 331, 9, 697-701 (2000) · Zbl 0968.52002
[42] Stemeseder, J., Random polytopes with vertices on the sphere (2014), University of Salzburg, PhD thesis
[43] Thäle, C., Central limit theorem for the volume of random polytopes with vertices on the boundary, Discrete Comput. Geom., 59, 4, 990-1000 (2018) · Zbl 1400.52005
[44] Thäle, C.; Turchi, N.; Wespi, F., Random polytopes: central limit theorems for intrinsic volumes, Proc. Am. Math. Soc., 146, 7, 3063-3071 (2018) · Zbl 1391.52007
[45] Turchi, N.; Wespi, F., Limit theorems for random polytopes with vertices on convex surfaces, Adv. Appl. Probab., 50, 4, 1227-1245 (2018) · Zbl 1475.52009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.