×

Riemann solitons on \((\kappa, \mu)\)-almost cosymplectic manifolds. (English) Zbl 1523.53099

Summary: In this paper, we study almost cosymplectic manifolds with nullity distributions admitting Riemann solitons and gradient almost Riemann solitons. First, we consider Riemann soliton on \((\kappa, \mu)\)-almost cosymplectic manifold \(M\) with \(\kappa < 0\) and we show that the soliton is expanding with \(\lambda = \frac{\kappa}{2n-1} (4n - 1)\) and \(M\) is locally isometric to the Lie group \(G_\rho\). Finally, we prove the non-existence of gradient almost Riemann soliton on a \((\kappa, \mu)\)-almost cosymplectic manifold of dimension greater than 3 with \(\kappa < 0\).

MSC:

53E50 Flows related to symplectic and contact structures
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53D15 Almost contact and almost symplectic manifolds
Full Text: DOI

References:

[1] A. Besse, Einstein Manifolds, Springer, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8 · Zbl 0613.53001 · doi:10.1007/978-3-540-74311-8
[2] D. E. Blair, Riemanniaan geometry of contact and symplectic manifolds, Prog. Math., Birkhaauser, Basel 203 (2010). · Zbl 1246.53001
[3] B. Cappelletti-Montano, A. De Nicola, and A. I. Yudin, A survey on cosymplectic ge-ometry, Rev. Math. Phys., 25 (2013), 1343002. · Zbl 1292.53053
[4] P. Dacko, On almost cosymplectic manifolds with the structure vector field ξ belonging to the k-nullity distribution, Balkan J. Geom. Appl. 5 (2000), no. 2, 47-60. · Zbl 0981.53075
[5] P. Dacko and Z. Olszak, On almost cosymplectic (κ, µ, ν)-spaces, in PDEs, submanifolds and affine differential geometry, 211-220, Banach Center Publ., 69, Polish Acad. Sci. Inst. Math., Warsaw, 2005. https://doi.org/10.4064/bc69-0-17 · Zbl 1091.53013 · doi:10.4064/bc69-0-17
[6] M. N. Devaraja, H. A. Kumara, and V. Venkatesha, Riemann soliton within the framework of contact geometry, Quaest. Math. 44 (2021), no. 5, 637-651. https: //doi.org/10.2989/16073606.2020.1732495 · Zbl 1467.53053 · doi:10.2989/16073606.2020.1732495
[7] H. Endo, Non-existence of almost cosymplectic manifolds satisfying a certain condition, Tensor (N.S.) 63 (2002), no. 3, 272-284. · Zbl 1119.53316
[8] S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382. http://projecteuclid.org/euclid.pjm/1102977874 · Zbl 0185.25104
[9] R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419 · Zbl 0663.53031 · doi:10.1090/conm/071/954419
[10] I. E. Hiricȃ, C. Udrişte, and C. Udrişte, Ricci and Riemann solitons, Balkan J. Geom. Appl. 21 (2016), no. 2, 35-44. · Zbl 1358.53067
[11] Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250. http://projecteuclid.org/euclid.kmj/1138036371 · Zbl 0451.53035
[12] Z. Olszak and R. Roşca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39 (1991), no. 3-4, 315-323. · Zbl 0767.53027
[13] Z.Öztürk, N. Aktan, and C. Murathan, Almost α-Cosymplectic (κ, µ, ν)-spaces, http://arxiv.org/abs/1007.0527v1.
[14] S. E. Stepanov and I. I. Tsyganok, The theory of infinitesimal harmonic transformations and its applications to the global geometry of Riemann solitons, Balkan J. Geom. Appl. 24 (2019), no. 1, 113-121. · Zbl 1453.53044
[15] C. Udrişte and C. Udrişte, Riemann flow and Riemann wave, An. Univ. Vest Timiş. Ser. Mat.-Inform. 48 (2010), no. 1-2, 265-274. · Zbl 1224.53104
[16] C. Udrişte and C. Udrişte, Riemann flow and Riemann wave via bialternate product Riemannian metric, preprint, arXiv.org/math.DG/1112.4279v4 (2012).
[17] V. Venkatesha, H. A. Kumara, and D. M. Naik, Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 7, 2050105, 22 pp. https://doi.org/10.1142/S0219887820501054 · Zbl 1531.53058 · doi:10.1142/S0219887820501054
[18] Y. Wang, A generalization of the Goldberg conjecture for coKähler manifolds, Mediterr. J. Math. 13 (2016), no. 5, 2679-2690. https://doi.org/10.1007/s00009-015-0646-8 · Zbl 1392.53086 · doi:10.1007/s00009-015-0646-8
[19] K. Yano, Integral formulas in Riemannian geometry, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, 1970. · Zbl 0213.23801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.