×

The Fueter-Sce mapping and the Clifford-Appell polynomials. (English) Zbl 1523.30060

Summary: The Fueter-Sce theorem provides a procedure to obtain axially monogenic functions, which are in the kernel of generalized Cauchy-Riemann operator in \({\mathbb{R}}^{n+1} \). This result is obtained by using two operators. The first one is the slice operator, which extends holomorphic functions of one complex variable to slice monogenic functions in \(\mathbb{R}^{n+1} \). The second one is a suitable power of the Laplace operator in \(n + 1\) variables. Another way to get axially monogenic functions is the generalized Cauchy-Kovalevskaya (CK) extension. This characterizes axial monogenic functions by their restriction to the real line. In this paper, using the connection between the Fueter-Sce map and the generalized CK-extension, we explicitly compute the actions \(\Delta_{\mathbb{R}^{n+1}}^{\frac{n-1}{2}} x^k\), where \(x \in \mathbb{R}^{n+1} \). The expressions obtained is related to a well-known class of Clifford-Appell polynomials. These are the building blocks to write a Taylor series for axially monogenic functions. By using the connections between the Fueter-Sce map and the generalized CK extension, we characterize the range and the kernel of the Fueter-Sce map. Furthermore, we focus on studying the Clifford-Appell-Fock space and the Clifford-Appell-Hardy space. Finally, using the polyanalytic Fueter-Sce theorems, we obtain a new family of polyanalytic monogenic polynomials, which extends to higher dimensions the Clifford-Appell polynomials.

MSC:

30G35 Functions of hypercomplex variables and generalized variables
30H20 Bergman spaces and Fock spaces

References:

[1] Alpay, D., Colombo, F. and Sabadini, I., Schur functions and their realizations in the slice hyperholomorphic setting, Integral Equations Operator Theory72(2) (2012), 253-289. · Zbl 1258.47018
[2] Alpay, D., Colombo, F. and Sabadini, I., Slice hyperholomorphic Schur analysis, in Operator Theory: Advances and Applications, Volume 256, p. xii+362, (Birkhäuser/Springer, Cham, 2016). · Zbl 1366.30001
[3] Alpay, D., Colombo, F. and Sabadini, I., The Fock Space as a De Branges-Rovnyak Space, Integral Equations Operator Theory91 (2019), 51. · Zbl 1443.46017
[4] Alpay, D., Colombo, F., Diki, K. and Sabadini, I., Poly slice monogenic functions, Cauchy formulas and the PS-functional calculus, J. Operator Theory88(2) (2020), 309-364. · Zbl 07734185
[5] Alpay, D., Colombo, F., Diki, K. and Sabadini, I., On a polyanalytic approach to noncommutative de Branges-Rovnyak spaces and Schur analysis, Integr. Equ. Oper. Theory93 (2021), 38. · Zbl 1475.30111
[6] Alpay, D., Colombo, F., Sabadini, I. and Salomon, G., The Fock space in the slice hyperholomorphic Setting, Hypercomplex Analysis: New Perspectives and Applications, pp. 43-59, (Trends Math., 2014). · Zbl 1314.30092
[7] Alpay, D., Diki, K. and Sabadini, I., On the global operator and Fueter mapping theorem for slice polyanalytic functions, J. Math. Anal. Appl.19(6) (2021), 941-964. · Zbl 1482.30116
[8] Alpay, D., Diki, K. and Sabadini, I., Correction to: On slice polyanalytic functions of a quaternionic variable, Results Math.76 (2021), 84. · Zbl 1465.30009
[9] Alpay, D., Diki, K. and Sabadini, I., Fock and Hardy spaces: Clifford Appell case, Math. Nachr.295(5) (2022), 834-860. · Zbl 1523.30058
[10] Appell, P., Sur une classe de polynomes, Ann. Sci. de l’E.N.S 2eme serie, Tome9 (1880), 119-144. · JFM 12.0342.02
[11] Balk, M., Polyanalytic functions (Akademie-Verlag, Berlin, 1991). · Zbl 0864.30035
[12] Bao, Q. T., Probabilistic approach to Appell polynomials, Expo. Math.33 (2015), 269-294. · Zbl 1343.11032
[13] Brackx, F., On (k)-monogenic functions of a quaternion variable, in Function Theoretic Methods in Differential Equations, Volume 8, pp. 22-44, Res. Notes in Math. (Pitman, London, 1976). · Zbl 0346.30037
[14] Brackx, F. and Delanghe, R., Hypercomplex function theory and Hilbert modules with reproducing kernel, Proceedings of the London Mathematical Society, 37(3) (1978), 545-576. · Zbl 0392.46019
[15] Brackx, F., Delanghe, R. and Sommen, F., Clifford analysis, Research Notes in Mathematics, 76, Pitman (Advanced Publishing Program), Boston, MA (1982), x+308. · Zbl 0529.30001
[16] Cação, I., Falcão, M. I. and Malonek, H., Hypercomplex polynomials, Vietoris’ rational numbers and a related integer numbers sequence, Complex Anal. Oper. Theory11 (2017), 1059-1076. · Zbl 1375.30068
[17] Colombo, F., De Martino, A., Pinton, S. and Sabadini, I., Axially harmonic functions and the harmonic functional calculus on the S-spectrum, J. Geom. Anal.33(1) (2023), 54. · Zbl 07610105
[18] Colombo, F., Gonzalez-Cervantes, J. O. and Sabadini, I., On bislice regular functions and isomorphisms of Bergmann spaces, Complex Var. Elliptic Equ.57(7-8) (2012), 825-839. · Zbl 1251.30055
[19] Colombo, F., Gonzalez-Cervantes, J. O. and Sabadini, I., A nonconstant coefficients differential operator associated to slice monogenic functions, Trans. Amer. Math. Soc.365 (2013), 303-318. · Zbl 1278.30047
[20] Colombo, F., Krausshar, R. S. and Sabadini, I., Symmetries of slice monogenic functions, J. Noncommut. Geom.14 (2020), 1075-1106. · Zbl 1468.30083
[21] Colombo, F., Sabadini, I. and Sommen, F., The Fueter mapping theorem in integral form and the F-functional calculus, Math. Methods Appl. Sci.33 (2010), 2050-2066. · Zbl 1225.47019
[22] Colombo, F., Sabadini, I. and Struppa, D. C., Noncommutative functional calculus. Theory and applications of slice hyperholomorphic functions, in Progress in Mathematics, Volume 289, p. vi+221, (Birkhäuser/Springer Basel AG, Basel, 2011). · Zbl 1228.47001
[23] Colombo, F., Sabadini, I. and Struppa, D. C., Entire Slice Regular Functions, in SpringerBriefs in Mathematics., p. v+118, (Springer, Cham, 2016). · Zbl 1372.30001
[24] Colombo, F., Sabadini, I. and Struppa, D. C., Michele Sce’s Works in Hypercomplex Analysis, in A Translation with Commentaries, Volume vi, p. 122, (Birkhäuser, Cham, 2020). · Zbl 1448.30001
[25] De Martino, A. and Diki, K., Generalized Appell polynomials and Fueter-Bargmann transforms in the quaternionic setting. Anal. Appl.21(3) (2023), 677-718. · Zbl 1515.30109
[26] De Martino, A. and Diki, K., On the inversion of the polyanalytic Fueter maps, in preparation. · Zbl 1515.30109
[27] De Martino, A., Diki, K. and Guzmán Adán, A., On the connection between the Fueter mapping theorem and the generalized CK-extension, Results Math.78(2) (2023), 35. · Zbl 1509.30033
[28] De Schepper, N. and Sommen, F., Cauchy-Kowalevski extensions and monogenic plane waves in Clifford analysis, Adv. Appl. Clifford Algebra22(3) (2012), 625-647. · Zbl 1264.30039
[29] De Schepper, N. and Sommen, F., Cauchy-Kowalevski extensions and monogenic plane waves using spherical monogenics, Bull. Braz. Math Soc.(N.S)44(2) (2013), 321-350. · Zbl 1273.30040
[30] Delanghe, R., Sommen, F. and Soucek, V., Clifford algebra and spinor-valued functions, in A Function Theory for the Dirac Operator, Mathematics and its Applications, Volume 53 (Kluwer Academic Publishers Group, Dordrecht, 1992). · Zbl 0747.53001
[31] Diki, K., Krausshar, R. S. and Sabadini, I., On the Bargmann-Fock-Fueter and Bergman-Fueter integral transforms, J. Math. Phys.60 (2019), 083506. · Zbl 1479.30034
[32] Eelbode, D., The biaxial Fueter theorem, Israel J. Math.201 (2014), 233-245. · Zbl 1303.30043
[33] Eelbode, D., Hohloch, S. and Muarem, G., The symplectic Fueter-Sce theorem, Adv. Appl. Clifford Algebr.30(4) (2020), 19. · Zbl 1455.53090
[34] Falcão, M.I. and Malonek, H., Special monogenic polynomials - Properties and applications, International Conference on Numerical Analysis and Applied Mathematics, 936, AIP-Proceedings, (2007), pp. 764-767. · Zbl 1152.30335
[35] Fock, V., Verallgemeinerung und Lösung der Diracschen statistischen Gleichung, Z. Phys.49 (1928), 339-357. · JFM 54.0986.02
[36] Gürlebeck, K., Habetha, K. and Sprößig, W., Holomorphic Functions in the Plane and n-Dimensional Space (Birkhäuser, Basel, 2008). · Zbl 1132.30001
[37] Ghiloni, R. and Perotti, A., Global differential equations for slice regular functions, Math. Nachr.287 (2014), 561-573. · Zbl 1294.30095
[38] Guzmàn Adàn, A., Generalized Cauchy-Kovalevskaya extension and plane wave decomposition in superspace, Ann. Mat. Pura Appl.4 (2021), 1417- 1450. · Zbl 1469.30105
[39] Kou, K. I., Qian, T. and Sommen, F., Generalizations of Fueter’s theorem, Methods Appl. Anal.9 (2002), 273-290. · Zbl 1079.30066
[40] Malonek, H. R., Laguerre derivative and monogenic Laguerre polynomials: An operational approach, Math. Comput. Model.53 (2011), 1084-1094. · Zbl 1217.33015
[41] Pena-Pena, D., Shifted Appell sequences in clifford analysis, Results Math.63 (2013), 1145-1157. · Zbl 1278.30054
[42] Pena-Pena, D., Qian, T. and Sommen, F., An alternative proof of Fueter’s theorem, Complex Var. Elliptic Equ.51 (2006), 913-922. · Zbl 1117.30039
[43] Pena-Pena, D., Sabadini, I. and Sommen, F., Fueter’s theorem for monogenic functions in biaxial symmetric domains, Results Math.72 (2017), 1747-1758. · Zbl 1383.30016
[44] Qian, T., Generalization of Fueters result to \(\mathbb{R}^{n+1} \), Rend. Mat. Acc. Lincei9 (1997), 111-117. · Zbl 0909.30036
[45] Ren, G. and Wang, X., Growth and distortion theorems for slice monogenic functions, Pacific J. Math.290 (2017), 169-198. · Zbl 1371.30047
[46] Salminen, P., Optimal stopping, Appell polynomials, and Wiener-Hopf factorization, Stochastics83 (2011), 611-622. · Zbl 1248.60046
[47] Sce, M., Osservazioni sulle serie di potenze nei moduli quadratici, Atti Accad. Naz. Lincei. Rend. CI. Sci. Fis. Mat. Natur.23 (1957), 220-225. · Zbl 0084.28302
[48] Sommen, F., Special functions in Clifford analysis and axial symmetry, J. Math. Anal. Appl.130(1) (1988), 110-133. · Zbl 0634.30042
[49] Sommen, F., On a generalization of Fueter’s theorem, Z. Anal. Anwend.19 (2000), 899-902. · Zbl 1030.30039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.