×

The nonlinear \((p,q)\)-Schrödinger equation with a general nonlinearity: existence and concentration. (English. French summary) Zbl 1522.35028

Summary: We investigate the following class of \((p,q)\)-Laplacian problems: \[ \begin{cases} -\varepsilon^p\Delta_pv-\varepsilon^q\Delta_qv+V(x)(|v|^{p-2}v+|v|^{q-2}v)=f(v)\text{ in }\mathbb{R}^N, \\ v\in W^{1,p}(\mathbb{R}^N)\cap W^{1,q}(\mathbb{R}^N),\, v>0\text{ in }\mathbb{R}^N, \end{cases} \] where \(\varepsilon>0\) is a small parameter, \(N\geq 3\), \(1<p<q<N\), \(\Delta_sv:=\operatorname{div}(|\nabla v|^{s-2}\nabla v)\), with \(s\in\{p,q\}\), is the \(s\)-Laplacian operator, \(V:\mathbb{R}^N\to\mathbb{R}\) is a continuous potential such that \(\inf_{\mathbb{R}^N}V>0\) and \(V_0:=\inf_{\Lambda}V<\min_{\partial\Lambda}V\) for some bounded open set \(\Lambda\subset\mathbb{R}^N\), and \(f:\mathbb{R}\to\mathbb{R}\) is a subcritical Berestycki-Lions type nonlinearity. Using variational arguments, we show the existence of a family of solutions \((v_{\varepsilon})\) which concentrates around \(\mathcal{M}:=\{x\in\Lambda:V(x)=V_0\}\) as \(\varepsilon\to 0\).

MSC:

35B25 Singular perturbations in context of PDEs
35J20 Variational methods for second-order elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics, vol. 65 (1975), Academic Press: Academic Press New York-London, xviii+268 pp. · Zbl 0314.46030
[2] Alves, C. O.; da Silva, A. R., Multiplicity and concentration behavior of solutions for a quasilinear problem involving N-functions via penalization method, Electron. J. Differ. Equ., 158 (2016), 24 pp. · Zbl 1383.35093
[3] Alves, C. O.; Figueiredo, G. M., Multiplicity of positive solutions for a quasilinear problem in \(\mathbb{R}^N\) via penalization method, Adv. Nonlinear Stud., 5, 4, 551-572 (2005) · Zbl 1210.35086
[4] Alves, C. O.; Figueiredo, G. M., Existence and multiplicity of positive solutions to a p-Laplacian equation in \(\mathbb{R}^N\), Differ. Integral Equ., 19, 2, 143-162 (2006) · Zbl 1212.35107
[5] Alves, C. O.; Figueiredo, G. M., Multiplicity and concentration of positive solutions for a class of quasilinear problems, Adv. Nonlinear Stud., 11, 2, 265-294 (2011) · Zbl 1231.35006
[6] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[7] Ambrosio, V.; Rădulescu, V. D., Multiplicity of concentrating solutions for \((p, q)\)-Schrödinger equations with lack of compactness, Isr. J. Math. (2023), in press
[8] Ambrosio, V.; Repovš, D., Multiplicity and concentration results for a (p,q)-Laplacian problem in \(\mathbb{R}^N\), Z. Angew. Math. Phys., 72, 1, 33 (2021) · Zbl 1467.35184
[9] Bartolo, R.; Candela, A. M.; Salvatore, A., On a class of superlinear \((p, q)\)-Laplacian type equations on \(\mathbb{R}^N\), J. Math. Anal. Appl., 438, 1, 29-41 (2016) · Zbl 1334.35039
[10] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 4, 313-345 (1983) · Zbl 0533.35029
[11] Boccardo, L.; Murat, F., Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19, 6, 581-597 (1992) · Zbl 0783.35020
[12] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 3, 486-490 (1983) · Zbl 0526.46037
[13] Byeon, J.; Jeanjean, L., Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185, 2, 185-200 (2007) · Zbl 1132.35078
[14] Byeon, J.; Jeanjean, L., Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal.. Arch. Ration. Mech. Anal., Arch. Ration. Mech. Anal., 190, 3, 549-551 (2008), MR2317788, Erratum: · Zbl 1173.35636
[15] Byeon, J.; Jeanjean, L.; Maris, M., Symmetry and monotonicity of least energy solutions, Calc. Var. Partial Differ. Equ., 36, 4, 481-492 (2009) · Zbl 1226.35041
[16] Byeon, J.; Wang, Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calc. Var. Partial Differ. Equ., 18, 2, 207-219 (2003) · Zbl 1073.35199
[17] Cherfils, L.; Il’yasov, V., On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian, Commun. Pure Appl. Anal., 4, 1, 9-22 (2005) · Zbl 1210.35090
[18] Degiovanni, M.; Musesti, A.; Squassina, M., On the regularity of solutions in the Pucci-Serrin identity, Calc. Var. Partial Differ. Equ., 18, 3, 317-334 (2003) · Zbl 1046.35039
[19] Del Pino, M.; Felmer, P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4, 2, 121-137 (1996) · Zbl 0844.35032
[20] Figueiredo, G. M., Existence of positive solutions for a class of p&q elliptic problems with critical growth on \(\mathbb{R}^N\), J. Math. Anal. Appl., 378, 507-518 (2011) · Zbl 1211.35114
[21] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 3, 397-408 (1986) · Zbl 0613.35076
[22] Gloss, E., Existence and concentration of bound states for a p-Laplacian equation in \(\mathbb{R}^N\), Adv. Nonlinear Stud., 10, 2, 273-296 (2010) · Zbl 1202.35104
[23] He, C.; Li, G., The regularity of weak solutions to nonlinear scalar field elliptic equations containing p&q-Laplacians, Ann. Acad. Sci. Fenn., Math., 33, 2, 337-371 (2008) · Zbl 1159.35023
[24] He, C.; Li, G., The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to \(u^{p - 1}\) at infinity in \(\mathbb{R}^N\), Nonlinear Anal., 68, 5, 1100-1119 (2008) · Zbl 1148.35024
[25] Hirata, J.; Ikoma, N.; Tanaka, K., Nonlinear scalar field equations in \(\mathbb{R}^N\): mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal., 35, 253-276 (2010) · Zbl 1203.35106
[26] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, 10, 1633-1659 (1997) · Zbl 0877.35091
[27] Jeanjean, L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \(\mathbb{R}^N\), Proc. R. Soc. Edinb., Sect. A, 129, 4, 787-809 (1999) · Zbl 0935.35044
[28] Jeanjean, L.; Tanaka, K., A remark on least energy solutions in \(\mathbb{R}^N\), Proc. Am. Math. Soc., 131, 8, 2399-2408 (2003) · Zbl 1094.35049
[29] Li, G.; Zhang, G., Multiple solutions for the p&q-Laplacian problem with critical exponent, Acta Math. Sci. Ser. B Engl. Ed., 29, 4, 903-918 (2009) · Zbl 1212.35125
[30] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, 4, 223-283 (1984) · Zbl 0704.49004
[31] Marcellini, P., Regularity under general and p,q-growth conditions, Discrete Contin. Dyn. Syst., Ser., 13, 7, 2009-2031 (2020) · Zbl 1439.35102
[32] Marcellini, P., Growth conditions and regularity for weak solutions to nonlinear elliptic pdes, J. Math. Anal. Appl., 501, 1, Article 124408 pp. (2021) · Zbl 1512.35301
[33] Mingione, G.; Rădulescu, V. D., Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501, 1, Article 125197 pp. (2021) · Zbl 1467.49003
[34] Moser, J., A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Commun. Pure Appl. Math., 13, 457-468 (1960) · Zbl 0111.09301
[35] Oh, Y.-G., Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class \(( V )_a\), Commun. Partial Differ. Equ., 13, 12, 1499-1519 (1988) · Zbl 0702.35228
[36] Oh, Y.-G., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131, 2, 223-253 (1990) · Zbl 0753.35097
[37] Papageorgiou, N. S.; Rădulescu, V. D.; Repovš, D. D., On a class of parametric \((p, 2)\)-equations, Appl. Math. Optim., 75, 2, 193-228 (2017) · Zbl 1376.35052
[38] Papageorgiou, N. S.; Rădulescu, V. D.; Repovš, D. D., Nonlinear nonhomogeneous singular problems, Calc. Var. Partial Differ. Equ., 59, 1, Article 9 pp. (2020) · Zbl 1453.35069
[39] Pomponio, A.; Watanabe, T., Some quasilinear elliptic equations involving multiple p-Laplacians, Indiana Univ. Math. J., 67, 6, 2199-2224 (2018) · Zbl 1417.35048
[40] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 2, 270-291 (1992) · Zbl 0763.35087
[41] Serrin, J.; Zou, H., Symmetry of ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal., 148, 4, 265-290 (1999) · Zbl 0940.35079
[42] Simon, J., Régularité de la solution d’un problème aux limites non linéaires, Ann. Fac. Sci. Univ. Toulouse Sci. Math., 3, 247-274 (1981) · Zbl 0487.35015
[43] Struwe, M., Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2008), Springer-Verlag: Springer-Verlag Berlin, xx+302 pp. · Zbl 1284.49004
[44] Trudinger, N. S., On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20, 721-747 (1967) · Zbl 0153.42703
[45] Wang, X., On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., 53, 229-244 (1993) · Zbl 0795.35118
[46] Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24 (1996), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA, x+162 pp. · Zbl 0856.49001
[47] Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR, Ser. Mat.. Izv. Akad. Nauk SSSR, Ser. Mat., Math. USSR, Izv., 29, 1, 33-66 (1987), English translation in · Zbl 0599.49031
[48] Zhikov, V. V., On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 2, 249-269 (1995) · Zbl 0910.49020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.