×

Exponential sums, twisted multiplicativity, and moments. (English) Zbl 1522.11083

Avila, Artur (ed.) et al., Analysis at large. Dedicated to the life and work of Jean Bourgain. Cham: Springer. 299-332 (2022).
The paper is concerned with bounds for the moments of \[ W(a;q)=W_{f}(a;q)=\frac{1}{\sqrt{q}} \sum_{x\pmod q} e\left(\frac{af(x)}{q}\right), \] where \(f(x)\in {\mathbb Z}[x]\) is non-constant of degree \(d\), \(q\ge 1\) is squarefree and coprime to \(a\) (and \(W(a;q)=0\) in the remaining cases) and \(e(x)=e^{2\pi i x}\). By Weil’s bound, \(|W(a;q)|\le (d-1)^{\omega(q)}\). The paper is concerned with getting better bounds than the above on the average over \(q\) once \(a\) and \(f(x)\) are fixed. Theorem 1.1 asserts that if \(f\) is indecomposable (it cannot be written as a composition of two polynomials each of degree \(>1\)) then \[ \sum_{q\le x} |W(a;q)|^2 \ll x(\log\log x)^{(d-1)^2}, \] and there exists \(\gamma>0\) depending only on \(d\) such that \[ \sum_{q\le x} |W(a;q)|\ll \frac{x}{(\log x)^{\gamma}}. \] Theorem 1.3 shows that if \(d\ge 3\) then either \[ \lim_{p\to\infty} \frac{1}{p} \sum_{a\in {\mathbb F}_p^*} |W(a;p)|^4=2, \] or there exists \(\delta>0\) depending only on \(d\) and a subset of primes of density \(\ge \delta\) on which \[ \frac{1}{p}\sum_{a\in {\mathbb F}_p^*} |W(a;p)|^4\ge 3+O(p^{-1/2}). \] Theorem 1.11 proves non-correlation results for sums of \(W_{f_i}(a;q)\) for different polynomials \(f_1(x),\ldots,f_m(x)\). Under certain hypothesis on the polynomials (like that they are Sidon-Morse over \({\mathbb Q}\) and any two not linearly equivalent; that is, for \(i\ne j\), \(f_i(x)\) is not equal to \(af_j(cx+d)+b\) for some \(a,b,c,d\in {\overline{\mathbb Q}}\)) the authors obtain good upper bounds on \[ \sum_{q\le x} |W_{f_1}(a;q)\cdots W_{f_m}(a;q)|^s \] for \(s\in \{1,2,4\}\). The proofs use a theorem of Fried on the irreducibility of \((f(X)-f(Y))/(X-Y)\) as well as a theorem of Katz on the monodromy of the normalized sheaf of a Sidon-Morse polynomial \(f(x)\).
For the entire collection see [Zbl 1506.46001].

MSC:

11L03 Trigonometric and exponential sums (general theory)

References:

[1] Bourbaki, N.: Groupes et algèbres de Lie, chapitre III. Springer
[2] Bourbaki, N.: Groupes et algèbres de Lie, chapitre VI. Springer.
[3] Bourbaki, N.: Groupes et algèbres de Lie, chapitre VIII. Springer
[4] Bourbaki, N.: Groupes et algèbres de Lie, chapitre IX. Springer
[5] Bourgain, J.: On the maximal ergodic theorem for certain subsets of the integers. Isr. J. Math. 61, 39-72 (1988) · Zbl 0642.28010 · doi:10.1007/BF02776301
[6] Bourgain, J.: An approach to pointwise ergodic theorems. In: Geometric Aspects of Functional Analysis (1986/87). Lecture Notes in Math., vol. 1317, pp. 204-223. Springer (1988) · Zbl 0662.47006
[7] Bourgain, J.: Pointwise ergodic theorems for arithmetic sets. Publications Mathématiques de l’IHéS 69, 5-41 (1989) · Zbl 0705.28008 · doi:10.1007/BF02698838
[8] Bourgain, J., Kontorovich, A.: On the local-global conjecture for integral Apollonian gaskets, with an appendix by Péter Varjú. Invent. math. 196, 589-650 (2014) · Zbl 1301.11046 · doi:10.1007/s00222-013-0475-y
[9] Cassou-Noguès, P., Couveignes, J.M.: Factorisations explicites de \(g(y)\) − \(h(z)\). Acta Arith. 87, 291-317 (1999) · Zbl 0923.12004 · doi:10.4064/aa-87-4-291-317
[10] Curtis, C., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras, vol. 356. AMS Chelsea Publishing (1962) · Zbl 0131.25601
[11] Deligne, P.: La conjecture de Weil, II. Publ. Math. IHÉS 52, 137-252 (1980) · Zbl 0456.14014 · doi:10.1007/BF02684780
[12] Fouvry, É., Michel, Ph.: À la recherche de petites sommes d’exponentielles. Annales de l’Institut Fourier 52, 47-80 (2002) · Zbl 1014.11048 · doi:10.5802/aif.1876
[13] Fouvry, É., Michel, Ph.: Sommes de modules de sommes d’exponentielles. Pacific J. Math. 209, 261-288 (2003); erratum, Pacific J. Math. 225, 199-200 (2006)
[14] Fouvry, É., Kowalski, E., Michel, Ph.: A study in sums of products. Phil. Trans. R. Soc. A 373, 20140309 (2014) · Zbl 1397.11128 · doi:10.1098/rsta.2014.0309
[15] Fouvry, É., Kowalski, E., Michel, Ph.: Algebraic twists of modular forms and Hecke orbits. Geom. Funct. Anal. 25, 580-657 (2015); https://doi.org/10.1007/s00039-015-0310-2 · Zbl 1344.11036 · doi:10.1007/s00039-015-0310-2
[16] Fried, M.: On a conjecture of Schur. Michigan Math. J. 17, 41-55 (1970) · Zbl 0169.37702 · doi:10.1307/mmj/1029000374
[17] Fried, M., Jarden, M.: Field arithmetic. Ergebnisse der Math., vol. 11. Springer (2008) · Zbl 1145.12001
[18] Hooley, C.: On the distribution of the roots of polynomial congruences. Mathematika 11, 39-49 (1964) · Zbl 0123.25802 · doi:10.1112/S0025579300003466
[19] Iwaniec, H., Kowalski, E.: Analytic Number Theory, vol. 53. AMS Colloquium Publ., (2004) · Zbl 1059.11001
[20] Katz, N.M.: Gauss sums, Kloosterman sums and monodromy groups. Annals of Math. Studies, vol. 116. Princeton Univ. Press (1988) · Zbl 0675.14004
[21] Katz, N.M.: Perversity and exponential sums. In: Algebraic Number Theory in honor of K. Iwasawa. Adv. Studies Pure Math., vol. 17, pp. 209-259 (1989) · Zbl 0755.14008
[22] Katz, N.M.: Exponential sums and differential equations. Annals of Math. Studies, vol. 124. Princeton Univ. Press (1990) · Zbl 0731.14008
[23] Katz, N.M.: Larsen’s alternative, moments and the monodromy of Lefschetz pencils. In: Contributions to Automorphic Forms, Geometry, and Number Theory (Collection in Honor of J. Shalika’s 60th Birthday), pp. 521-560. J. Hopkins Univ. Press (2004) · Zbl 1081.14015
[24] Katz, N.M., Sarnak, P.: Random matrices, Frobenius eigenvalues and monodromy. Colloquium Publ., vol. 45. A.M.S., (1999) · Zbl 0958.11004
[25] Kowalski, E.: An introduction to the representation theory of groups. Grad. Studies in Math., vol. 155. A.M.S., (2014) · Zbl 1320.20008
[26] Kowalski, E., Soundararajan, K.: Equidistribution from the Chinese remainder theorem. Adv. Math. 385, 107776 (2021) · Zbl 1476.11109 · doi:10.1016/j.aim.2021.107776
[27] Kowalski, E., Michel, Ph., Sawin, W.: Bilinear forms with Kloosterman sums and applicatins. Annals Math. 186, 413-500 (2017) · Zbl 1441.11194 · doi:10.4007/annals.2017.186.2.2
[28] Patterson, S.J.: On the distribution of certain Hua sums, II. Asian J. Math. 6, 719-730 (2002) · Zbl 1161.11371 · doi:10.4310/AJM.2002.v6.n4.a7
[29] Patterson, S.J.: The asymptotic distribution of exponential sums, II. Experiment. Math. 14, 87-98 (2005) · Zbl 1148.11043 · doi:10.1080/10586458.2005.10128901
[30] Perret-Gentil, C.: Gaussian distribution of short sums of trace functions over finite fields. Math. Proc. Camb. Phil. Soc. 163, 385-422 (2017) · Zbl 1405.11102 · doi:10.1017/S0305004117000020
[31] Shao, X.: Polynomial values modulo primes on average and sharpness of the larger sieve. Algebra Number Theory 9, 2325-2346 (2015) · Zbl 1331.11083 · doi:10.2140/ant.2015.9.2325
[32] Shiu, P.: A Brun-Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math. 313, 161-170 (1980) · Zbl 0412.10030
[33] Turnwald, G.: On Schur’s conjecture. J.. Aust. Math. Soc. 58, 312-357 (1995) · Zbl 0834.11052 · doi:10.1017/S1446788700038349
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.