×

Singular analysis of the optimizers of the principal eigenvalue in indefinite weighted Neumann problems. (English) Zbl 1521.49036

Summary: We study the minimization of the positive principal eigenvalue associated to a weighted Neumann problem settled in a bounded smooth domain \(\Omega \subset \mathbb{R}^N, N\geq 2\), within a suitable class of sign-changing weights. This problem arises in the study of the persistence of a species in population dynamics. Denoting with \(u\) the optimal eigenfunction and with \(D\) its superlevel set associated to the optimal weight, we perform the analysis of the singular limit of the optimal eigenvalue as the measure of \(D\) tends to zero. We show that, when the measure of \(D\) is sufficiently small, \(u\) has a unique local maximum point lying on the boundary of \(\Omega\) and \(D\) is connected. Furthermore, the boundary of \(D\) intersects the boundary of the box \(\Omega\), and more precisely, \(\mathcal{H}^{N-1}(\partial D \cap \partial \Omega)\geq C|D|^{(N-1)/N}\) for some universal constant \(C> 0\). Though widely expected, these properties are still unknown if the measure of \(D\) is arbitrary.

MSC:

49R05 Variational methods for eigenvalues of operators
49Q10 Optimization of shapes other than minimal surfaces
92D25 Population dynamics (general)
47A75 Eigenvalue problems for linear operators
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] Berestycki, H., Coville, J., and Vo, H.-H., Persistence criteria for populations with non-local dispersion, J. Math. Biol., 72 (2016), pp. 1693-1745, doi:10.1007/s00285-015-0911-2. · Zbl 1346.35202
[2] Berestycki, H., Hamel, F., and Roques, L., Analysis of the periodically fragmented environment model. I. Species persistence, J. Math. Biol., 51 (2005), pp. 75-113, doi:10.1007/s00285-004-0313-3. · Zbl 1066.92047
[3] Berestycki, H. and Lachand-Robert, T., Some properties of monotone rearrangement with applications to elliptic equations in cylinders, Math. Nachr., 266 (2004), pp. 3-19, doi:10.1002/mana.200310139. · Zbl 1084.35003
[4] Brothers, J. E. and Ziemer, W. P., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math., 384 (1988), pp. 153-179. · Zbl 0633.46030
[5] Cantrell, R. S. and Cosner, C., Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), pp. 293-318, doi:10.1017/S030821050001876X. · Zbl 0711.92020
[6] Cantrell, R. S. and Cosner, C., The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), pp. 315-338, doi:10.1007/BF00167155. · Zbl 0722.92018
[7] Cantrell, R. S. and Cosner, C., Spatial Ecology via Reaction-Diffusion Equations, , John Wiley & Sons, Chichester, 2003, doi:10.1002/0470871296. · Zbl 1059.92051
[8] Chanillo, S., Grieser, D., Imai, M., Kurata, K., and Ohnishi, I., Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes, Comm. Math. Phys., 214 (2000), pp. 315-337, doi:10.1007/PL00005534. · Zbl 0972.49030
[9] Chanillo, S. and Kenig, C. E., Weak uniqueness and partial regularity for the composite membrane problem, J. Eur. Math. Soc. (JEMS), 10 (2008), pp. 705-737, doi:10.4171/JEMS/127. · Zbl 1154.35096
[10] del Pino, M., Felmer, P. L., and Wei, J., On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal., 31 (1999), pp. 63-79, doi:10.1137/S0036141098332834. · Zbl 0942.35058
[11] Dipierro, S., Lippi, E. P., and Valdinoci, E., (Non)local logistic equations with Neumann conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, (2022), doi:10.4171/AIHPC/57. · Zbl 1506.35248
[12] Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Higher Transcendental Functions. Vol. II. Based, in Part, on Notes Left by Harry Bateman, McGraw-Hill Book Company, New York, Toronto, London, 1953. · Zbl 0058.34103
[13] Ferreri, L. and Verzini, G., Asymptotic properties of an optimal principal eigenvalue with spherical weight and Dirichlet boundary conditions, Nonlinear Anal., 224 (2022), 113103, doi:10.1016/j.na.2022.113103. · Zbl 1496.49013
[14] Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, , Springer-Verlag, Berlin, 2001; reprint of the 1998 edition. · Zbl 1042.35002
[15] Hintermüller, M., Kao, C.-Y., and Laurain, A., Principal eigenvalue minimization for an elliptic problem with indefinite weight and Robin boundary conditions, Appl. Math. Optim., 65 (2012), pp. 111-146, doi:10.1007/s00245-011-9153-x. · Zbl 1242.49094
[16] Kao, C.-Y., Lou, Y., and Yanagida, E., Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains, Math. Biosci. Eng., 5 (2008), pp. 315-335, doi:10.3934/mbe.2008.5.315. · Zbl 1167.35426
[17] Kesavan, S., Symmetrization & Applications, , World Scientific, Hackensack, NJ, 2006, doi:10.1142/9789812773937. · Zbl 1110.35002
[18] Lamboley, J., Laurain, A., Nadin, G., and Privat, Y., Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions, Calc. Var. Partial Differential Equations, 55 (2016), 144, doi:10.1007/s00526-016-1084-6. · Zbl 1366.49004
[19] Li, Y. Y., On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations, 23 (1998), pp. 487-545, doi:10.1080/03605309808821354. · Zbl 0898.35004
[20] Lieb, E. H. and Loss, M., Analysis, , American Mathematical Society, Providence, RI, 1997. · Zbl 0966.26002
[21] Lou, Y. and Yanagida, E., Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics, Japan J. Indust. Appl. Math., 23 (2006), pp. 275-292, http://projecteuclid.org/euclid.jjiam/1197390801. · Zbl 1185.35059
[22] Mazari, I., Nadin, G., and Privat, Y., Some challenging optimization problems for logistic diffusive equations and their numerical modeling, in Numerical Control: Part A, Trélat, E. and Zuazua, E., eds., , Elsevier, 2022, pp. 401-426, doi:10.1016/bs.hna.2021.12.012. · Zbl 1495.49029
[23] Mazzoleni, D., Pellacci, B., and Verzini, G., Asymptotic spherical shapes in some spectral optimization problems, J. Math. Pures Appl. (9), 135 (2020), pp. 256-283, doi:10.1016/j.matpur.2019.10.002. · Zbl 1433.49059
[24] Mazzoleni, D., Pellacci, B., and Verzini, G., Quantitative analysis of a singularly perturbed shape optimization problem in a polygon, in 2018 MATRIX Annals, , Springer, Cham, 2020, pp. 275-283, doi:10.1007/978-3-030-38230-8_18. · Zbl 1448.92234
[25] Ni, W.-M. and Takagi, I., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), pp. 819-851, doi:10.1002/cpa.3160440705. · Zbl 0754.35042
[26] Ni, W.-M. and Takagi, I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), pp. 247-281, doi:10.1215/S0012-7094-93-07004-4. · Zbl 0796.35056
[27] Pellacci, B. and Verzini, G., Best dispersal strategies in spatially heterogeneous environments: Optimization of the principal eigenvalue for indefinite fractional Neumann problems, J. Math. Biol., 76 (2018), pp. 1357-1386, doi:10.1007/s00285-017-1180-z. · Zbl 1390.35404
[28] Roques, L. and Hamel, F., Mathematical analysis of the optimal habitat configurations for species persistence, Math. Biosci., 210 (2007), pp. 34-59, doi:10.1016/j.mbs.2007.05.007. · Zbl 1131.92068
[29] Wei, J., On the boundary spike layer solutions to a singularly perturbed Neumann problem, J. Differential Equations, 134 (1997), pp. 104-133, doi:10.1006/jdeq.1996.3218. · Zbl 0873.35007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.