×

Space-like quantitative uniqueness for parabolic operators. (English. French summary) Zbl 1521.35005

Summary: We obtain sharp maximal vanishing order at a given time level for solutions to parabolic equations with a \(C^1\) potential \(V\). Our main result Theorem 1.1 is a parabolic generalization of a well known result of Donnelly-Fefferman and Bakri. It also sharpens a previous result of Zhu that establishes similar vanishing order estimates which are instead averaged over time. The principal tool in our analysis is a new quantitative version of the well-known Escauriaza-Fernandez-Vessella type Carleman estimate that we establish in our setting.

MSC:

35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35B60 Continuation and prolongation of solutions to PDEs
35K10 Second-order parabolic equations

References:

[1] Arya, V.; Banerjee, A., Quantitative uniqueness for fractional heat type operators · Zbl 1518.35008
[2] Bakri, L., Quantitative uniqueness for Schrödinger operator, Indiana Univ. Math. J., 61, 4, 1565-1580 (2012) · Zbl 1279.58011
[3] Bakri, L.; Casteras, J., Quantitative uniqueness for Schrödinger operator with regular potentials, Math. Methods Appl. Sci., 37, 1992-2008 (2014) · Zbl 1301.35190
[4] Banerjee, A.; Garofalo, N., Quantitative uniqueness for elliptic equations at the boundary of \(C^{1 , D i n i}\) domains, J. Differ. Equ., 261, 12, 6718-6757 (2016) · Zbl 1359.35039
[5] Bourgain, J.; Kenig, C., On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent. Math., 161, 389-426 (2005) · Zbl 1084.82005
[6] Banerjee, A.; Krishnan, V.; Senapati, S., The Calderön problem for space-time fractional parabolic operators with variable coefficients · Zbl 07879906
[7] Bellova, K.; Lin, F., Nodal sets of Steklov eigenfunctions, Calc. Var. Partial Differ. Equ., 54, 2, 2239-2268 (2015) · Zbl 1327.35263
[8] Camliyurt, G.; Kukavica, I., Quantitative unique continuation for a parabolic equation, Indiana Univ. Math. J., 67, 2, 657-678 (2018) · Zbl 1402.35134
[9] Donnelly, H.; Fefferman, C., Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., 93, 161-183 (1988) · Zbl 0659.58047
[10] Donnelly, H.; Fefferman, C., Nodal sets of eigenfunctions: Riemannian manifolds with boundary, (Analysis, Et Cetera (1990), Academic Press: Academic Press Boston, MA), 251-262 · Zbl 0697.58055
[11] Davey, B.; Kenig, C.; Wang, J. N., The Landis conjecture for variable coefficient second-order elliptic PDEs, Trans. Am. Math. Soc., 369, 11, 8209-8237 (2017) · Zbl 1375.35061
[12] Escauriaza, L.; Fernandez, F., Unique continuation for parabolic operators, Ark. Mat., 41, 1, 35-60 (2003), (English summary) · Zbl 1028.35052
[13] Escauriaza, L.; Fernandez, F.; Vessella, S., Doubling properties of caloric functions, Appl. Anal., 85, 1-3, 205-223 (2006) · Zbl 1090.35050
[14] Escauriaza, L.; Kenig, C.; Ponce, G.; Vega, L., Hardy’s uncertainty principle, convexity and Schrödinger evolutions, J. Eur. Math. Soc., 10, 4, 883-907 (2008) · Zbl 1158.35018
[15] Escauriaza, L.; Seregin, G.; Sverak, V., Backward uniqueness for the heat operator in a half-space, St. Petersburg Math. J., 15, 139-148 (2004) · Zbl 1053.35052
[16] Escauriaza, L.; Vessella, S., Optimal three cylinder inequalities for solutions to parabolic equations with Lipschitz leading coefficients, (Inverse Problems: Theory and Applications. Inverse Problems: Theory and Applications, Cortona/Pisa, 2002. Inverse Problems: Theory and Applications. Inverse Problems: Theory and Applications, Cortona/Pisa, 2002, Contemp. Math., vol. 333 (2003), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 79-87 · Zbl 1056.35150
[17] Friedman, A., Partial Differential Equations of Parabolic Type (1964), Prentice-Hall, Inc.: Prentice-Hall, Inc. Englewood Cliffs, xiv+347 pp. · Zbl 0144.34903
[18] Garofalo, N.; Lin, F., Monotonicity properties of variational integrals, \( A_p\) weights and unique continuation, Indiana Univ. Math. J., 35, 245-268 (1986) · Zbl 0678.35015
[19] Garofalo, N.; Lin, F., Unique continuation for elliptic operators: a geometric-variational approach, Commun. Pure Appl. Math., 40, 347-366 (1987) · Zbl 0674.35007
[20] Kukavica, I., Quantitative uniqueness for second order elliptic operators, Duke Math. J., 91, 225-240 (1998) · Zbl 0947.35045
[21] Kukavica, I.; Le, Q., On quantitative uniqueness for parabolic equations, J. Differ. Equ., 341, 438-480 (2022) · Zbl 1504.35003
[22] Kenig, C.; Silvestre, L.; Wang, J. N., On Landis’ conjecture in the plane, Commun. Partial Differ. Equ., 40, 4, 766-789 (2015) · Zbl 1320.35119
[23] Koch, H.; Tataru, D., Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients, Commun. Partial Differ. Equ., 34, 4-6, 305-366 (2009) · Zbl 1178.35107
[24] Lieberman, G., Second Order Parabolic Differential Equations (1996), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ, xii+439 pp. · Zbl 0884.35001
[25] Logunov, A., Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture, Ann. Math., 187, 241-262 (2018) · Zbl 1384.58021
[26] Logunov, A., Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure, Ann. Math., 187, 221-239 (2018) · Zbl 1384.58020
[27] Logunov, A.; Malinnikova, E., Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three, (50 Years with Hardy Spaces. 50 Years with Hardy Spaces, Oper. Theory Adv. Appl. (2018)), 333-344 · Zbl 1414.31004
[28] Logunov, A.; Malinnikova, E.; Nadirashvili, N.; Nazarov, F., The Landis conjecture on exponential decay · Zbl 1486.35011
[29] Meshov, V., On the possible rate of decrease at infinity of the solutions of second-order partial differential equations, Math. USSR Sb., 72, 2, 343-361 (1992) · Zbl 0782.35010
[30] Rüland, A., On quantitative unique continuation properties of fractional Schrodinger equations: doubling, vanishing order and nodal domain estimates, Trans. Am. Math. Soc., 369, 2311-2362 (2017) · Zbl 1377.35276
[31] Vessella, S., Carleman estimates, optimal three cylinder inequality, and unique continuation properties for solutions to parabolic equations, Commun. Partial Differ. Equ., 28, 637-676 (2003) · Zbl 1024.35021
[32] Yau, S. T., Seminar on Differential Geometry, vol. 102 (1982), Princeton University Press · Zbl 0471.00020
[33] Zhu, J., Quantitative uniqueness for elliptic equations, Am. J. Math., 138, 733-762 (2016) · Zbl 1357.35103
[34] Zhu, J., Quantitative uniqueness of solutions to parabolic equations, J. Funct. Anal., 275, 9, 2373-2403 (2018) · Zbl 1401.35148
[35] Zhu, J., Doubling property and vanishing order of Steklov eigenfunctions, Commun. Partial Differ. Equ., 40, 8, 1498-1520 (2015) · Zbl 1323.47017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.