×

An induction principle for the Bombieri-Vinogradov theorem over \(\mathbb{F}_q [t]\) and a variant of the Ttchmarsh divisor problem. (English) Zbl 1521.11058

Y. Motohashi [Proc. Japan Acad. 52, 273–275 (1976; Zbl 0355.10035)] proved that if two arithmetic functions \(f,g : \mathbb{N} \rightarrow \mathbb{C}\) satisfy a Bombieri-Vinogradov type distribution property together with certain other natural conditions, then so does their convolution \(f \ast g\). The authors establish an analogous result for polynomial rings \(\mathbb{F}_q[t]\) over the finite field \(\mathbb{F}_q\). Based on this result, they establish an asymptotic formula for the average of the divisor function over shifted products of two primes in \(\mathbb{F}_q[t]\).

MSC:

11N37 Asymptotic results on arithmetic functions
11N13 Primes in congruence classes
11N35 Sieves
11L40 Estimates on character sums
11N36 Applications of sieve methods

Citations:

Zbl 0355.10035

References:

[1] Akbary, A.; Ghioca, D., A geometric variant of Titchmarsh divisor problem, Int. J. Number Theory, 8, 1, 53-69 (2012), MR 2887882 · Zbl 1282.11068
[2] Andrade, J. C.; Bary-Soroker, L.; Rudnick, Z., Shifted convolution and the Titchmarsh divisor problem over \(\mathbb{F}_q [t]\), Philos. Trans. R. Soc. A, 373, 2040, Article 20140308 pp. (2015), MR 3338116 · Zbl 1393.11061
[3] Baier, S.; Singh, R. K., Large sieve inequality with power moduli for function fields, J. Number Theory, 196, 1-13 (2019), MR 3906465 · Zbl 1448.11161
[4] Baier, S.; Singh, R. K., The large sieve inequality with square moduli for quadratic extensions of function fields, Int. J. Number Theory, 16, 9, 1907-1922 (2020), MR 4153360 · Zbl 1465.11173
[5] Bombieri, E.; Friedlander, J. B.; Iwaniec, H., Primes in arithmetic progressions to large moduli, Acta Math., 156, 3-4, 203-251 (1986), MR 834613 · Zbl 0588.10042
[6] Bombieri, E.; Friedlander, J. B.; Iwaniec, H., Primes in arithmetic progressions to large moduli. II, Math. Ann., 277, 3, 361-393 (1987), MR 891581 · Zbl 0625.10036
[7] Bombieri, E.; Friedlander, J. B.; Iwaniec, H., Primes in arithmetic progressions to large moduli. III, J. Am. Math. Soc., 2, 2, 215-224 (1989), MR 976723 · Zbl 0674.10036
[8] Cojocaru, A. C.; Murty, M. R., An Introduction to Sieve Methods and Their Applications, London Mathematical Society Student Texts, vol. 66 (2006), Cambridge University Press: Cambridge University Press Cambridge, MR 2200366 · Zbl 1121.11063
[9] Darbar, P.; Mukhopadhyay, A., A Bombieri-type theorem for convolution with application on number field, Acta Math. Hung., 163, 1, 37-61 (2021), MR 4217957 · Zbl 1488.11148
[10] Drappeau, S., Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method, Proc. Lond. Math. Soc. (3), 114, 4, 684-732 (2017), MR 3653244 · Zbl 1392.11059
[11] Drappeau, S.; Topacogullari, B., Combinatorial identities and Titchmarsh’s divisor problem for multiplicative functions, Algebra Number Theory, 13, 10, 2383-2425 (2019), MR 4047638 · Zbl 1472.11252
[12] Felix, A. T., Generalizing the Titchmarsh divisor problem, Int. J. Number Theory, 8, 3, 613-629 (2012), MR 2904920 · Zbl 1277.11092
[13] Fouvry, É., Sur le problème des diviseurs de Titchmarsh, J. Reine Angew. Math., 357, 51-76 (1985), MR 783533 · Zbl 0547.10039
[14] Fouvry, E.́; Iwaniec, H., On a theorem of Bombieri-Vinogradov type, Mathematika, 27, 2, 135-152 (1980), 1981, MR 610700 · Zbl 0469.10027
[15] Fouvry, E.́; Iwaniec, H., Primes in arithmetic progressions, Acta Arith., 42, 2, 197-218 (1983), MR 719249 · Zbl 0517.10045
[16] Fujii, A., A local study of some additive problems in the theory of numbers, Proc. Jpn. Acad., 52, 3, 113-115 (1976), MR 399021 · Zbl 0357.10024
[17] Gallagher, P. X., The large sieve, Mathematika, 14, 14-20 (1967), MR 214562 · Zbl 0163.04401
[18] Granville, A.; Shao, X., Bombieri-Vinogradov for multiplicative functions, and beyond the \(x^{1 / 2}\)-barrier, Adv. Math., 350, 304-358 (2019), MR 3947647 · Zbl 1473.11185
[19] Halberstam, H., Footnote to the Titchmarsh-Linnik divisor problem, Proc. Am. Math. Soc., 18, 187-188 (1967), MR 204379 · Zbl 0152.03202
[20] Hinz, J. G., Methoden des grossen Siebes in algebraischen Zahlkörpern, Manuscr. Math., 57, 2, 181-194 (1987), MR 871630 · Zbl 0594.10038
[21] Hinz, J. G., A generalization of Bombieri’s prime number theorem to algebraic number fields, Acta Arith., 51, 2, 173-193 (1988), MR 975109 · Zbl 0605.10023
[22] Hsu, C., A large sieve inequality for rational function fields, J. Number Theory, 58, 2, 267-287 (1996), MR 1393616 · Zbl 0852.11049
[23] Hsu, C., Applications of the large sieve inequality for \(\mathbf{F}_q [T]\), Finite Fields Appl., 4, 3, 275-281 (1998), MR 1640777 · Zbl 0919.11057
[24] Huxley, M. N., The large sieve inequality for algebraic number fields, Mathematika, 15, 178-187 (1968), MR 237455 · Zbl 0174.08201
[25] Huxley, M. N., The large sieve inequality for algebraic number fields. III. Zero-density results, J. Lond. Math. Soc. (2), 3, 233-240 (1971), MR 276196 · Zbl 0213.07101
[26] Johnsen, J., On the large sieve method in \(\operatorname{GF} [q, x]\), Mathematika, 18, 172-184 (1971), MR 302617 · Zbl 0245.10035
[27] Klurman, O.; Mangerel, A. P.; Teräväinen, J., Correlations of multiplicative functions in function fields (2020), arXiv preprint
[28] Linnik, U. V., The large sieve, C. R. (Dokl.) Acad. Sci. URSS (N.S.), 30, 292-294 (1941), MR 0004266 · JFM 67.0128.01
[29] Linnik, U. V., The Dispersion Method in Binary Additive Problems (1963), American Mathematical Society: American Mathematical Society Providence, R.I., Translated by S. Schuur, MR 0168543 · Zbl 0112.27402
[30] Maynard, J., Primes in arithmetic progressions to large moduli I: fixed residue classes (2020), arXiv preprint
[31] Maynard, J., Primes in arithmetic progressions to large moduli II: well-factorable estimates (2020), arXiv preprint
[32] Maynard, J., Primes in arithmetic progressions to large moduli III: uniform residue classes (2020), arXiv preprint
[33] Motohashi, Y., An induction principle for the generalization of Bombieri’s prime number theorem, Proc. Jpn. Acad., 52, 6, 273-275 (1976), MR 422179 · Zbl 0355.10035
[34] Rodriquez, G., Sul problema dei divisori di Titchmarsh, Boll. Unione Mat. Ital. (3), 20, 358-366 (1965), MR 0197409 · Zbl 0148.27207
[35] Rosen, M., Number Theory in Function Fields, Graduate Texts in Mathematics, vol. 210 (2002), Springer-Verlag: Springer-Verlag New York, MR 1876657 · Zbl 1043.11079
[36] Sawin, W., Square-root cancellation for sums of factorization functions over short intervals in function fields, Duke Math. J., 170, 5, 997-1026 (2021) · Zbl 1506.11151
[37] Sawin, W., Square-root cancellation for sums of factorization functions over squarefree progressions in \(\mathbb{F}_q [t] (2021)\), arXiv preprint
[38] Sawin, W.; Shusterman, M., On the Chowla and twin primes conjectures over \(\mathbb{F}_q [T] (2018)\), arXiv preprint · Zbl 1499.14038
[39] Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory, Graduate Studies in Mathematics, vol. 163 (2015), American Mathematical Society: American Mathematical Society Providence, RI, Translated from the 2008 French edition by Patrick D.F. Ion, MR 3363366 · Zbl 0788.11001
[40] Titchmarsh, C. E., A divisor problem, Rend. Circ. Mat. Palermo, 54, 414-429 (1930) · JFM 56.0891.01
[41] Vatwani, A.; Wong, P., On generalizations of the Titchmarsh divisor problem, Acta Arith., 193, 4, 321-337 (2020), MR 4074394 · Zbl 1461.11129
[42] Zhang, Y., Bounded gaps between primes, Ann. Math. (2), 179, 3, 1121-1174 (2014), MR 3171761 · Zbl 1290.11128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.