×

Stability analysis of T-S fuzzy systems with time-varying delay via parameter-dependent reciprocally convex inequality. (English) Zbl 1520.93376

Summary: The stability problem of T-S fuzzy systems with time-varying delay is investigated in this article. The purpose is to establish the less conservative stability conditions for T-S fuzzy systems with time-varying delays. Firstly, a parameter-dependent reciprocally convex inequality is proposed to improve the estimation accuracy of reciprocal convex terms. Secondly, based on the line-integral Lyapunov-Krasovskii (L-K) function and the developed parameter-dependent reciprocally convex inequality, a less conservative stability condition is established. Finally, two examples are used to verify the feasibility and superiority of the proposed method.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C42 Fuzzy control/observation systems
93C43 Delay control/observation systems
Full Text: DOI

References:

[1] An, J.; Wen, G., Improved stability criteria for time-varying delayed T-S fuzzy systems via delay partitioning approach, Fuzzt Sets and Systems, 185, 1, 83-94 (2011) · Zbl 1237.93156 · doi:10.1016/j.fss.2011.06.016
[2] Chen, J.; Park, J. H.; Xu, S., Stability analysis of systems with time-varying delay: A quadratic-partitioning method, IET Control Theory & Applications, 13, 18, 3184-3189 (2019) · doi:10.1049/cth2.v13.18
[3] Datta, R.; Dey, R.; Bhattacharya, B., Improved delay-range-dependent stability condition for T-S fuzzy systems with variable delays using new extended affine wirtinger inequality, International Journal of Fuzzy Systems, 22, 3, 985-998 (2020) · doi:10.1007/s40815-019-00795-8
[4] de Oliveira, F.; Souza, F., Further refinements in stability conditions for time-varying delay systems, Applied Mathematics and Computation, 369 (2020) · Zbl 1433.34096 · doi:10.1016/j.amc.2019.124866
[5] Feng, G., A survey on analysis and design of model-based fuzzy control systems, IEEE Transactions on Fuzzy Systems, 14, 5, 676-697 (2006) · doi:10.1109/TFUZZ.2006.883415
[6] Gao, H.; Liu, X.; Lam, J., Stability analysis and stabilization for discrete fuzzy systems with time-varying delay, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39, 2, 306-317 (2009) · doi:10.1109/TSMCB.2008.2003449
[7] Gu, K. (2000). An integral inequality in the stability problem of time-delay systems. In Proceedings 39th IEEE Conference on Decision and Control, Sydney, Australia (pp. 2805-2810).
[8] Kim, J. H., Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64, 121-125 (2016) · Zbl 1329.93123 · doi:10.1016/j.automatica.2015.08.025
[9] Kwon, O. M.; Park, M. J.; Park, J. H.; Lee, S. M., Stability and stabilization of T-S fuzzy systems with time-varying delays via augmented Lyapunov-Krasovskii functionals, Information Sciences, 372, 1-15 (2016) · Zbl 1429.93203 · doi:10.1016/j.ins.2016.08.026
[10] Li, G.; Peng, C.; Xie, X.; Xie, S., On stability and stabilization of T-S fuzzy systems with time-varying delays via quadratic fuzzy Lyapunov matrix, IEEE Transactions on Fuzzy Systems, 30, 9, 3762-3773 (2022) · doi:10.1109/TFUZZ.2021.3128062
[11] Li, Z.-C.; Yan, H.-C.; Zhang, H.; Sun, J.; Lam, H. K., Stability and stabilization with additive freedom for delayed Takagi-Sugeno fuzzy systems by intermediary-polynomial-based functions, IEEE Transactions on Fuzzy Systems, 28, 4, 692-705 (2020) · doi:10.1109/TFUZZ.91
[12] Lian, Z.; He, Y.; Zhang, C.-K.; Wu, M., Stability analysis for T-S fuzzy systems with time-varying delay via free-matrix-based integral inequality, International Journal of Control Automation and Systems, 14, 1, 21-28 (2016) · doi:10.1007/s12555-015-2001-z
[13] Lian, Z.; He, Y.; Zhang, C.-K.; Wu, M., Further robust stability analysis for uncertain Takagi-Sugeno fuzzy systems with time-varying delay via relaxed integral inequality, Information Sciences, 409, 139-150 (2017) · Zbl 1432.93269 · doi:10.1016/j.ins.2017.05.017
[14] Lian, Z.; He, Y.; Zhang, C.-K.; Wu, M., Stability and stabilization of T-S fuzzy systems with time-varying delays via delay-product-type functional method, IEEE Transactions on Cybernetics, 50, 6, 2580-2589 (2020) · doi:10.1109/TCYB.6221036
[15] Long, F.; Zhang, C.-K.; He, Y.; Wang, Q.-G.; Wu, M., A sufficient negative-definiteness condition for cubic functions and application to time-delay systems, International Journal of Robust and Nonlinear Control, 31, 15, 7361-7371 (2021) · Zbl 1527.93330 · doi:10.1002/rnc.v31.15
[16] Park, J. M.; Park, P. G., Finite-interval quadratic polynomial inequalities and their application to time-delay systems, Journal of the Franklin Institute, 357, 7, 4316-4327 (2020) · Zbl 1437.93017 · doi:10.1016/j.jfranklin.2020.01.022
[17] Park, P.; Ko, J. W.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 1, 235-238 (2011) · Zbl 1209.93076 · doi:10.1016/j.automatica.2010.10.014
[18] Peng, C.; Yue, D.; Yang, T. C.; Tian, E. G., On delay-dependent approach for robust stability and stabilization of T-S fuzzy systems with constant delay and uncertainties, IEEE Transactions on Fuzzy Systems, 17, 5, 1143-1156 (2009) · doi:10.1109/TFUZZ.2009.2023911
[19] Peng, T.-S.; Zeng, H.-B.; Wang, W.; Zhang, X.-M.; Liu, X.-G., General and less conservative criteria on stability and stabilization of T-S fuzzy systems with time-varying delay, IEEE Transactions on Fuzzy Systems (2022) · doi:10.1109/TFUZZ.2022.3204899
[20] Peng, X.-J.; He, Y., Consensus of multi-agent systems with state and input delays via non-fragile protocol, International Journal of Systems Science, 53, 12, 2584-2596 (2022) · Zbl 1508.93273 · doi:10.1080/00207721.2022.2037782
[21] Rhee, B. J.; Won, S., A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design, Fuzzy Sets Syst., 157, 9, 1211-1228 (2006) · Zbl 1090.93025 · doi:10.1016/j.fss.2005.12.020
[22] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49, 9, 2860-2866 (2013) · Zbl 1364.93740 · doi:10.1016/j.automatica.2013.05.030
[23] Seuret, A.; Gouaisbaut, F., Hierarchy of LMI conditions for the stability analysis of time-delay systems, Systems & Control Letters, 81, 1-7 (2015) · Zbl 1330.93211 · doi:10.1016/j.sysconle.2015.03.007
[24] Seuret, A., & Gouaisbaut, F. (2017). Delay-dependent reciprocally convex combination lemma. https://hal.archives-ouvertes.fr/hal-01257670/ · Zbl 1447.93265
[25] Seuret, A.; Liu, K.; Gouaisbaut, F., Generalized reciprocally convex combination lemmas and its application to time-delay systems, Automatica, 95, 488-493 (2018) · Zbl 1402.93193 · doi:10.1016/j.automatica.2018.06.017
[26] Souza, F. O.; Campos, V. C. S.; Palhares, R. M., On delay-dependent stability conditions for Takagi-Sugeno fuzzy systems, Journal of the Franklin Institute, 351, 7, 3707-3718 (2014) · Zbl 1290.93130 · doi:10.1016/j.jfranklin.2013.03.017
[27] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics, SMC-15, 1, 116-132 (1985) · Zbl 0576.93021 · doi:10.1109/TSMC.1985.6313399
[28] Wang, H.; Sheng, Z.; Lin, C.; Chen, B., Asymmetric Lyapunov-Krasovskii functional method for admissibility analysis and stabilisation of T-S fuzzy singular systems with time delay, International Journal of Systems Science, 53, 14, 2998-3009 (2022) · Zbl 1504.93209 · doi:10.1080/00207721.2022.2067909
[29] Wang, L.; Lam, H. K., A new approach to stability and stabilization analysis for continuous-time Takagi-Sugeno fuzzy systems with time delay, IEEE Transactions on Fuzzy Systems, 26, 4, 2460-2465 (2018) · doi:10.1109/TFUZZ.91
[30] Xie, X.; Wei, C.; Gu, Z.; Shi, K., Relaxed resilient fuzzy stabilization of discrete-time Takagi-Sugeno systems via a higher order time-variant balanced matrix method, IEEE Transactions on Fuzzy Systems, 30, 11, 5044-5050 (2022) · doi:10.1109/TFUZZ.2022.3145809
[31] Xie, X.; Yue, D.; Park, J. H., Enhanced switching stabilization of discrete-time Takagi-Sugeno fuzzy systems: reducing the conservatism and alleviating the online computational burden, IEEE Transactions on Fuzzy Systems, 29, 8, 2419-2424 (2021) · doi:10.1109/TFUZZ.2020.2986670
[32] Xu, S.; Lam, J., Robust \(####\) control for uncertain discrete-time-delay fuzzy systems via output feedback controllers, IEEE Transactions on Fuzzy Systems, 13, 1, 82-93 (2005) · doi:10.1109/TFUZZ.2004.839661
[33] Zeng, H.-B.; He, Y.; Wu, M.; She, J. H., Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE Transactions on Automatic Control, 60, 10, 2768-2772 (2015) · Zbl 1360.34149 · doi:10.1109/TAC.2015.2404271
[34] Zeng, H.-B.; Lin, H.-C.; He, Y.; Teo, K. L.; Wang, W., Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality, Journal of the Franklin Institute, 357, 14, 9930-9941 (2020) · Zbl 1448.93257 · doi:10.1016/j.jfranklin.2020.07.034
[35] Zeng, H.-B.; Park, J. H.; Xia, J.-W.; Xiao, S.-P., Improved delay-dependent stability criteria for T-S fuzzy systems with time-varying delay, Applied Mathematics and Computation, 235, 25, 492-501 (2014) · Zbl 1334.93110 · doi:10.1016/j.amc.2014.03.005
[36] Zhang, C.-K.; He, Y.; Jiang, L.; Wu, M.; Wang, Q.-G., An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85, 481-485 (2017) · Zbl 1375.93094 · doi:10.1016/j.automatica.2017.07.056
[37] Zhang, C.-K.; Long, F.; He, Y.; Yao, W.; Jiang, L.; Wu, M., A relaxed quadratic function negative-determination lemma and its application to time-delay systems, Automatica, 113 (2020) · Zbl 1440.93144 · doi:10.1016/j.automatica.2019.108764
[38] Zhang, L.; Chen, B.; Lin, C.; Shang, Y., Fuzzy adaptive fixed-time consensus tracking control of high-order multiagent systems, IEEE Transactions on Fuzzy Systems, 30, 2, 567-578 (2022) · doi:10.1109/TFUZZ.2020.3042239
[39] Zhang, X.-M.; Han, Q.-L.; Ge, X., Sufficient conditions for a class of matrix-valued polynomial inequalities on closed intervals and application to \(####\) filtering for linear systems with time-varying delays, Automatica, 125 (2021) · Zbl 1461.93515 · doi:10.1016/j.automatica.2020.109390
[40] Zhang, X.-M.; Han, Q.-L.; Ge, X., Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay, IEEE/CAA Journal of Automatica Sinica, 8, 1, 77-85 (2021) · doi:10.1109/JAS.6570654
[41] Zhang, X.-M.; Han, Q.-L.; Ge, X., The construction of augmented Lyapunov-Krasovskii functionals and the estimation of their derivatives in stability analysis of time-delay systems: A survey, International Journal of Systems Science, 53, 12, 2480-2495 (2022) · Zbl 1504.93213 · doi:10.1080/00207721.2021.2006356
[42] Zhang, X.-M.; Han, Q.-L.; Seuret, A.; Gouaisbaut, F., An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, 84, 221-226 (2017) · Zbl 1375.93114 · doi:10.1016/j.automatica.2017.04.048
[43] Zhang, Z.; Dong, J., A novel \(####\) control for T-S fuzzy systems with membership functions online optimization learning, IEEE Transactions on Fuzzy Systems, 30, 4, 1129-1138 (2022) · doi:10.1109/TFUZZ.2021.3053315
[44] Zhang, Z.; Lin, C.; Chen, B., New stability and stabilization conditions for T-S fuzzy systems with time delay, Fuzzy Sets and Systems, 263, 82-91 (2015) · Zbl 1361.93031 · doi:10.1016/j.fss.2014.09.012
[45] Zhao, Y.; Gao, H.; Lam, J.; Du, B., Stability and stabilization of delayed T-S fuzzy systems: A delay partitioning approach, IEEE Transactions on Fuzzy Systems, 17, 4, 750-762 (2009) · doi:10.1109/TFUZZ.2008.928598
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.