×

Relativistic wave propagation in anisotropic two-component magnetohydrodynamics plasmas. (English) Zbl 1520.76107

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

References:

[1] Parker, E. N., Superthermal hydromagnetic waves, The Astrophysical Journal, 142, 1086 (1965) · doi:10.1086/148379
[2] Kumar, S.; Kalra, G. L., Propagation of hydromagnetic waves in a two-population plasma system consisting of anisotropic relativistic and nonrelativistic polytropic fluids, Physics of Plasmas, 12, 8, article 082111 (2005) · doi:10.1063/1.2007507
[3] Walker, A. D. M., Theory of magnetospheric standing hydromagnetic waves with large azimuthal wave number: 1. Coupled magnetosonic and Alfvén waves, Journal of Geophysical Research, 92, A9, 10039 (1987) · doi:10.1029/JA092iA09p10039
[4] Kalra, G. L.; Ghildyal, V., Hydromagnetic waves in a plasma of isotropic thermal and anisotropic suprathermal components, Physics of Plasmas, 3, 10, 3527-3533 (1996) · doi:10.1063/1.871942
[5] Ghildyal, V.; Kalra, G. L., Linear waves and instabilities in thermally anisotropic two-component magnetohydrodynamics, Physics of Plasmas, 4, 6, 2044-2051 (1997) · doi:10.1063/1.872370
[6] Kalra, G. L.; Kumar, S., Effect of He++ions on the propagation of low-frequency magnetohydrodynamic waves in the magnetosheath, Journal of Geophysical Research, 111, A11, A11226 (2006) · doi:10.1029/2005JA011453
[7] Ten Barge, J. M.; Hazeltine, R. D.; Mahajan, S. M., Fluid model for relativistic, magnetized plasmas, Physics of Plasmas, 15, 6, article 062112 (2008) · doi:10.1063/1.2937123
[8] Rogava, A. D.; Mahajan, S. M.; Berezhiani, V. I., Velocity shear generated Alfvén waves in electron-positron plasmas, Physics of Plasmas, 3, 10, 3545-3555 (1996) · doi:10.1063/1.871945
[9] Adnan, M.; Williams, G.; Qamar, A.; Mahmood, S.; Kourakis, I., Pressure anisotropy effects on nonlinear electrostatic excitations in magnetized electron-positron-ion plasmas, The European Physical Journal D, 68, 9, 1-15 (2014) · doi:10.1140/epjd/e2014-50384-y
[10] Chagelishvili, G. D.; Rogava, A. D.; Tsiklauri, D., Effect of coupling and linear transformation of waves in shear flows, Physical Review E, 53, 6, 6028-6031 (1996) · doi:10.1103/PhysRevE.53.6028
[11] Goodman, M. L., A class of driven, dissipative, energy-conserving magnetohydrodynamic equilibria with flow, Journal of Plasma Physics, 60, 3, 587-625 (1998) · doi:10.1017/S0022377898006928
[12] Vladimirov, V. A.; Ilin, K. I., The three-dimensional stability of steady magnetohydrodynamic flows of an ideal fluid, Physics of Plasmas, 5, 12, 4199-4204 (1998) · doi:10.1063/1.873154
[13] Goldberger, M.; Chew, G.; Low, F., The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions, Proc. R. Soc. London, Ser., 236, 1204, 112-118 (1956) · Zbl 0071.21802 · doi:10.1098/rspa.1956.0116
[14] Adnan, M.; Mahmood, S.; Qamar, A., Small amplitude ion acoustic solitons in a weakly magnetized plasma with anisotropic ion pressure and kappa distributed electrons, Advances in Space Research, 53, 5, 845-852 (2014) · doi:10.1016/j.asr.2014.01.003
[15] Adnan, M.; Qamar, A.; Mahmood, S.; Kourakis, I., On the characteristics of obliquely propagating electrostatic structures in non-maxwellian plasmas in the presence of ion pressure anisotropy, Physics of Plasmas, 24, 3, article 032114 (2017) · doi:10.1063/1.4978613
[16] Eliasson, B.; Shukla, P. K., Nonlinear aspects of quantum plasma physics: nanoplasmonics and nanostructures in dense plasmas, Plasma and Fusion Research, 4, 032 (2009) · doi:10.1585/pfr.4.032
[17] Shukla, P. K.; Eliasson, B., Nonlinear aspects of quantum plasma physics, Physics-Uspekhi, 53, 1, 51-76 (2010) · doi:10.3367/UFNe.0180.201001b.0055
[18] Abdikian, A.; Mahmood, S., Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure, Physics of Plasmas, 23, 12, article 122303 (2016) · doi:10.1063/1.4971447
[19] Rahim, Z.; Adnan, M.; Qamar, A., Nonlinear excitations of magnetosonic solitary waves and their chaotic behavior in spin-polarized degenerate quantum magnetoplasma, Journal of Nonlinear Science, 31, 2, article 023133 (2021) · Zbl 1458.76136 · doi:10.1063/5.0011622
[20] Lichnerowicz, A., Relativistic Magnetohydrodynamics (1967), W. A: Benjamin, W. A · Zbl 0193.55401
[21] Cissoko, M., Waves and discontinuities in relativistic and anisotropic magnetohydrodynamic, Annales Henri Poincaré, XXII, 1 (1975)
[22] Chou, M.; Hau, L. N., Magnetohydrodynamic waves and instabilities in homogeneous gyrotropic ultrarelativistic plasma, The Astrophysical Journal, 611, 2, 1200-1207 (2004) · doi:10.1086/422306
[23] Gedalin, M., Linear waves in relativistic anisotropic magnetohydrodynamics, Physics Review, 47, 6, 4354-4357 (1993) · doi:10.1103/PhysRevE.47.4354
[24] Tsikarishvili, E. G.; Rogava, A. D., Linear hydromagnetic waves in an ultrarelativistic, collisionless plasma with a pressure anisotropy, Physics Review, 50, 4, 3050-3054 (1994) · doi:10.1103/PhysRevE.50.3050
[25] Kalra, G. L.; Gebretsadkan, W. B., Magnetohydrodynamic waves in a homogeneous plasma convected uniformly at relativistic speed, Physics of Plasmas, 7, 9, 3531-3536 (2000) · doi:10.1063/1.1288153
[26] Dougherty, J. P., Phi. Trans. Waves in a hot plasma, R. Lond., A, 280, 96-110 (1975)
[27] Bellan, P. M., Fundamentals of Plasma Physics (2004), California: Cambridge University press, California
[28] van Leeuwen, W. A.; de Groot, S. R.; van Weert, C. G., Relativistic Kinetic Theory (1980), North-Holland Publishing Company
[29] Jackson, J. D., Classical Electrodynamics (1998), John Wiley & Sons, third edition edition · Zbl 0913.00013
[30] Kumar, S.; Singh, H. P., Magnetohydrodynamic waves in the presence of relative motion between two populations of a plasma system, Physics of Plasmas, 17, 9, article 092104 (2010) · doi:10.1063/1.3483116
[31] Gedalin, M., Relativistic hydrodynamics and thermodynamics of anisotropic plasmas, Physics of Fluids B, 3, 8, 1871-1875 (1991) · doi:10.1063/1.859656
[32] Gebretsadkan, W. B.; Kalra, G. L., Propagation of linear waves in relativistic anisotropic magnetohydrodynamics, Physics Review, 66, 5, article 057401 (2002) · doi:10.1103/PhysRevE.66.057401
[33] Bhatia, V. B.; Kalra, G. L., Wave-wave interactions in a rotating gravitating gas cloud, ApJ, 239, 146 (1980) · doi:10.1086/158096
[34] Mahmood, S.; Mushtaq, H.; Saleem, H., Ion acoustic solitary wave in homogeneous magnetized electron-positron-ion plasmas, New Journal of Physics, 5, 28 (2003) · doi:10.1088/1367-2630/5/1/328
[35] Mahmood, S.; Akhtar, N., Ion acoustic solitary waves with adiabatic ions in magnetized electron-positron-ion plasmas, European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 49, 2, 217-222 (2008) · doi:10.1140/epjd/e2008-00165-4
[36] Treumann, R. A., Statistical mechanics of stable states far from equilibrium: thermodynamics of turbulent plasmas, Astrophysics and Space Science, 277, 1/2, 81-95 (2001) · Zbl 1040.76072 · doi:10.1023/A:1012219809117
[37] Treumann, R. A.; Jaroschek, C. H.; Scholer, M., Stationary plasma states far from equilibrium, Physics of Plasmas, 11, 4, 1317-1325 (2004) · doi:10.1063/1.1667498
[38] Leubner, M. P., Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions, Physics of Plasmas, 11, 4, 1308-1316 (2004) · doi:10.1063/1.1667501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.