×

Criticality of Schrödinger forms and recurrence of Dirichlet forms. (English) Zbl 1519.60073

Summary: Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive function of the associated Schrödinger semigroup and the Dirichlet form defined by \(h\)-transform of the excessive function is recurrent (resp. transient). We give an analytical condition for the subcriticality of Schrödinger forms in terms of the bottom of spectrum. We introduce a subclass \({\mathcal{K}}_H\) of the local Kato class and show a Schrödinger form with potential in \({\mathcal{K}}_H\) is critical. Critical Schrödinger forms lead us to critical Hardy-type inequalities. As an example, we treat fractional Schrödinger operators with potential in \({\mathcal{K}}_H\) and reconsider the classical Hardy inequality by our approach.

MSC:

60J46 Dirichlet form methods in Markov processes
31C25 Dirichlet forms
31C05 Harmonic, subharmonic, superharmonic functions on other spaces
60J25 Continuous-time Markov processes on general state spaces

References:

[1] Albeverio, Sergio, Perturbation of Dirichlet forms-lower semiboundedness, closability, and form cores, J. Funct. Anal., 332-356 (1991) · Zbl 0743.60071 · doi:10.1016/0022-1236(91)90044-6
[2] Alili, L., Space and time inversions of stochastic processes and Kelvin transform, Math. Nachr., 252-272 (2019) · Zbl 1415.31004 · doi:10.1002/mana.201700152
[3] Bhakta, Mousomi, Integral representation of solutions using Green function for fractional Hardy equations, J. Differential Equations, 5573-5594 (2020) · Zbl 1448.35541 · doi:10.1016/j.jde.2020.04.022
[4] Bogdan, Krzysztof, Fractional Laplacian with Hardy potential, Comm. Partial Differential Equations, 20-50 (2019) · Zbl 07051869 · doi:10.1080/03605302.2018.1539102
[5] Chen, Zhen-Qing, Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc., 4639-4679 (2002) · Zbl 1006.60072 · doi:10.1090/S0002-9947-02-03059-3
[6] Chen, Zhen-Qing, Symmetric Markov processes, time change, and boundary theory, London Mathematical Society Monographs Series, xvi+479 pp. (2012), Princeton University Press, Princeton, NJ · Zbl 1253.60002
[7] Chen, Zhen-Qing, Large deviation for additive functionals of symmetric Markov processes, Trans. Amer. Math. Soc., 2981-3005 (2020) · Zbl 1471.60035 · doi:10.1090/tran/8039
[8] Davies, E. B., Heat kernels and spectral theory, Cambridge Tracts in Mathematics, x+197 pp. (1989), Cambridge University Press, Cambridge · Zbl 0699.35006 · doi:10.1017/CBO9780511566158
[9] Devyver, Baptiste, Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon, J. Funct. Anal., 4422-4489 (2014) · Zbl 1298.47057 · doi:10.1016/j.jfa.2014.01.017
[10] Frank, Rupert L., Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory, J. Funct. Anal., 4765-4808 (2014) · Zbl 1304.60081 · doi:10.1016/j.jfa.2014.02.008
[11] Fitzsimmons, P. J., Hardy’s inequality for Dirichlet forms, J. Math. Anal. Appl., 548-560 (2000) · Zbl 0979.26007 · doi:10.1006/jmaa.2000.6985
[12] Fukushima, Masatoshi, Dirichlet forms and symmetric Markov processes, De Gruyter Studies in Mathematics, x+489 pp. (2011), Walter de Gruyter & Co., Berlin · Zbl 1227.31001
[13] Jaye, B. J., Existence and regularity of positive solutions of elliptic equations of Schr\"{o}dinger type, J. Anal. Math., 577-621 (2012) · Zbl 1307.35099 · doi:10.1007/s11854-012-0045-z
[14] Kajino, Naotaka, Equivalence of recurrence and Liouville property for symmetric Dirichlet forms, Mat. Fiz. Komp\cprime yut. Model., 89-98 (2017) · doi:10.15688/mpcm.jvolsu.2017.3.7
[15] Keller, Matthias, Criticality theory for Schr\"{o}dinger operators on graphs, J. Spectr. Theory, 73-114 (2020) · Zbl 1441.31006 · doi:10.4171/JST/286
[16] Lieb, Elliott H., Analysis, Graduate Studies in Mathematics, xxii+346 pp. (2001), American Mathematical Society, Providence, RI · Zbl 0966.26002 · doi:10.1090/gsm/014
[17] Lucia, Marcello, Criticality theory for Schr\"{o}dinger operators with singular potential, J. Differential Equations, 3400-3440 (2018) · Zbl 1396.35006 · doi:10.1016/j.jde.2018.05.006
[18] Miura, Yusuke, Superharmonic functions of Schr\"{o}dinger operators and Hardy inequalities, J. Math. Soc. Japan, 689-708 (2019) · Zbl 1428.31009 · doi:10.2969/jmsj/79597959
[19] Y. Miura, Optimal Hardy inequalities for Schr\"odinger operators based on symmetric stable processes, Preprint. · Zbl 1521.60044
[20] Reed, Michael, Methods of modern mathematical physics. I, xv+400 pp. (1980), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York · Zbl 0459.46001
[21] M. Schmidt, (Weak) Hardy and Poincar\'e inequalities and criticality theory, Proceedings in Mathematics and Statistics, Springer, To appear. · Zbl 1504.31023
[22] Schmuland, Byron, Extended Dirichlet spaces, C. R. Math. Acad. Sci. Soc. R. Can., 146-152 (1999) · Zbl 0946.31002
[23] Schmuland, Byron, Positivity preserving forms have the Fatou property, Potential Anal., 373-378 (1999) · Zbl 0942.31008 · doi:10.1023/A:1008651611901
[24] Stollmann, Peter, Perturbation of Dirichlet forms by measures, Potential Anal., 109-138 (1996) · Zbl 0861.31004 · doi:10.1007/BF00396775
[25] Takeda, Masayoshi, Criticality and subcriticality of generalized Schr\"{o}dinger forms, Illinois J. Math., 251-277 (2014) · Zbl 1317.31019
[26] Takeda, Masayoshi, Compactness of symmetric Markov semigroups and boundedness of eigenfunctions, Trans. Amer. Math. Soc., 3905-3920 (2019) · Zbl 1480.60228 · doi:10.1090/tran/7664
[27] Takeda, Masayoshi, Maximum principles for generalized Schr\"{o}dinger equations, Illinois J. Math., 119-139 (2020) · Zbl 1440.60074 · doi:10.1215/00192082-8165622
[28] Takeda, Masayoshi, Differentiability of spectral functions for symmetric \(\alpha \)-stable processes, Trans. Amer. Math. Soc., 4031-4054 (2007) · Zbl 1112.60058 · doi:10.1090/S0002-9947-07-04149-9
[29] Uemura, Toshihiro, On some path properties of symmetric stable-like processes for one dimension, Potential Anal., 79-91 (2002) · Zbl 0998.31005 · doi:10.1023/A:1024820804141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.