×

Stability and metastability in a chemotaxis model. (English) Zbl 1518.35062

Summary: This work studies the stability and metastability of stationary patterns in a diffusion-chemotaxis model without cell proliferation. We first establish the interval of unstable wave modes of the homogeneous steady state, and show that the chemotactic flux is the key mechanism for pattern formation. Then, we treat the chemotaxis coefficient as a bifurcation parameter to obtain the asymptotic expressions of steady states. Based on this, we derive the sufficient conditions for the stability of one-step pattern, and prove the metastability of two or more step patterns. All the analytical results are demonstrated by numerical simulations.

MSC:

35B35 Stability in context of PDEs
35B36 Pattern formations in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C15 Developmental biology, pattern formation
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Adler, J., Chemotaxis in bacteria, Science153 (1966) 708-716.
[2] Adler, J., Chemoreceptors in bacteria, Science166 (1969) 1588-1597.
[3] Brenner, M. P., Levitor, L. S. and Budrene, E. O., Physical mechanisms for chemotactic pattern formation by bacterial, Biophys. J.74 (1988) 1677-1693.
[4] Budrene, E. and Berg, H., Complex patterns formed by motile cells of Escherichia coli, Nature349 (1991) 630-633.
[5] Budrene, E. and Berg, H., Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature376 (1995) 49-53.
[6] Goldstein, R. E., Traveling-wave chemotaxis, Phys. Rev. Lett.77 (1996) 775-778.
[7] Horstmann, D., From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math. Verein.105(3) (2003) 103-165. · Zbl 1071.35001
[8] Horstmann, D. and Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ.215 (2005) 52-107. · Zbl 1085.35065
[9] Keller, E. F. and Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol.26 (1970) 399-415. · Zbl 1170.92306
[10] Keller, E. F. and Segel, L. A., Model for chemotaxis, J. Theor. Biol.30 (1971) 225-234. · Zbl 1170.92307
[11] Lee, K. J., Cox, E. C. and Goldstein, R. E., Competing patterns of signaling activity in Dictyostelium Discoideum, Phys. Rev. Lett.76 (1996) 1174-1177.
[12] Ma, M. and Wang, Z., Patterns in a generalized volume-filling chemotaxis model with cell proliferation, Anal. Appl.15(1) (2017) 83-106. · Zbl 1361.35074
[13] Ma, M. and Wang, Z., Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity28 (2015) 2639-2660 · Zbl 1331.35185
[14] Ma, M., Ou, C. and Wang, Z., Stationary solutions of a volume filling chemotaxis model with logistic growth and their stability, SIAM J. Appl. Math.72 (2012) 740-766. · Zbl 1259.35031
[15] Patlak, C. S., Random walk with persistence and external bias, Bull. Math. Biophys.15 (1953) 311-338. · Zbl 1296.82044
[16] Painter, K. and Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q.10(4) (2002) 501-543. · Zbl 1057.92013
[17] Potapov, A. and Hillen, T., Metastability in chemotaxis models, J. Dyn. Differ. Equ.17 (2005) 293-330. · Zbl 1170.35460
[18] Schaaf, R., Stationary solutions of chemotaxis systems, Trans. AMS292(2) (1985) 531-556. · Zbl 0637.35007
[19] Wang, Z. and Hillen, T., Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos17 (2007) 037108. · Zbl 1163.37383
[20] Wang, Z., Winkler, M. and Wrzosek, D., Singularity formation in chemotaxis systems with volume-filling effect, Nonlinearity24 (2011) 3279-3297. · Zbl 1255.35213
[21] Wang, Z., Winkler, M. and Wrzosek, D., Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume filling effect and degenerate diffusion, SIAM J. Math. Anal.44 (2012) 3502-3525. · Zbl 1277.35223
[22] Wrzosek, D., Model of chemotaxis with threshold density and singular diffusion, Nonlinear Anal.73 (2010) 338-349. · Zbl 1197.35068
[23] Xia, P., Han, Y., Tao, J. and Ma, M., Existence and metastability of non-constant steady states in a Keller-Segel model with density-suppressed motility, Math. Appl. Sci. Eng.1(1) (2020) 1-15. · Zbl 1498.92037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.