×

On some generalized vertex Folkman numbers. (English) Zbl 1518.05134

Summary: For a graph \(G\) and integers \(a_i \geq 1\), the expression \(G \rightarrow (a_1, \ldots, a_r)^v\) means that for any \(r\)-coloring of the vertices of \(G\) there exists a monochromatic \(a_i\)-clique in \(G\) for some color \(i \in \{1,\ldots, r\}\). The vertex Folkman numbers are defined as \(F_v (a_1 ,\ldots, a_r; H) = \min \{ |V(G)| : G\) is \(H\)-free and \(G \rightarrow (a_1, \ldots, a_r)^v\}\), where \(H\) is a graph. Such vertex Folkman numbers have been extensively studied for \(H=K_s\) with \(s>\max \{ a_i\}_{1\leq i \leq r}\). If \(a_i =a\) for all \(i\), then we use notation \(F_v (a^r; H)=F_v (a_1, \ldots, a_r; H)\).
Let \(J_k\) be the complete graph \(K_k\) missing one edge, i.e. \(J_k =K_k -e\). In this work we focus on vertex Folkman numbers with \(H=J_k\), in particular for \(k=4\) and \(a_i \leq 3\). A result by J. Nešetřil and V. Rödl [J. Comb. Theory, Ser. B 20, 243–249 (1976; Zbl 0329.05115)] implies that \(F_v (3^r; J_4)\) is well defined for any \(r\geq 2\). We present a new and more direct proof of this fact. The simplest but already intriguing case is that of \(F_v (3,3;J_4)\), for which we establish the upper bound of 135 by using the \(J_4\)-free process. We obtain the exact values and bounds for a few other small cases of \(F_v (a_1, \ldots, a_r; J_4)\) when \(a_i \leq 3\) for all \(1 \leq i \leq r\), including \(F_v (2,3;J_4)=14, F_v (2^4; J_4)=15\), and \(22 \leq F_v (2^5; J_4) \leq 25\). Note that \(F_v (2^r; J_4)\) is the smallest number of vertices in any \(J_4\)-free graph with chromatic number \(r+1\). Most of the results were obtained with the help of computations, but some of the upper bound graphs we found are interesting by themselves.

MSC:

05C55 Generalized Ramsey theory
05C15 Coloring of graphs and hypergraphs
05D10 Ramsey theory

Citations:

Zbl 0329.05115

Software:

nauty

References:

[1] Bikov, A.: Computation and Bounding of Folkman Numbers. PhD Thesis, Sofia University “St. Kliment Ohridski” (2018). arXiv:1806.09601
[2] Bikov, A.; Nenov, N., On the independence number of \((3,3)\)-Ramsey graphs and the Folkman number \(F_e(3,3;4)\), Australas. J. Comb., 77, 35-50 (2020) · Zbl 1444.05105
[3] Bohman, T., Keevash. P.: 3 Dynamic concentration of the triangle-free process. In: Nešetřil, J., Pellegrini, M. (eds.), The Seventh European Conference on Combinatorics, Graph Theory and Applications. CRM Series, vol. 16, Edizioni della Normale, Pisa. arXiv:1302.5963 (2013) (52-75, revised version (2019)) · Zbl 1291.05183
[4] Chvátal, V.: The minimality of the Mycielski graph. Graphs and Combinatorics, Proceedings of the Capital Conference, George Washington University, Washington DC, 1973. Lecture Notes in Mathematics, vol. 406, pp. 243-246. Springer, Berlin (1974) · Zbl 0297.05107
[5] Coles, J.; Radziszowski, S., Computing the Folkman Number \(F_v(2,2,3;4)\), J. Comb. Math. Comb. Comput., 58, 13-22 (2006) · Zbl 1116.05053
[6] Dudek, A.; Rödl, V., On the Folkman number \(f(2,3,4)\), Exp. Math., 17, 63-67 (2008) · Zbl 1152.05047 · doi:10.1080/10586458.2008.10129023
[7] Dudek, A.; Rödl, V., On \(K_s\)-free subgraphs in \(K_{s+k}\)-free graphs and vertex Folkman numbers, Combinatorica, 21, 39-53 (2011) · Zbl 1249.05197 · doi:10.1007/s00493-011-2626-3
[8] Fiz Pontiveros, G., Griffiths, S., Morris, R.: The triangle-free process and \(R(3,k)\). Mem. Am. Math. Soc. 263(1274), 125 (2020). First version on arXiv:1302.6279 (2013)
[9] Folkman, J., Graphs with monochromatic complete subgraphs in every edge coloring, J. SIAM Appl. Math., 18, 19-24 (1970) · Zbl 0193.53103 · doi:10.1137/0118004
[10] Goedgebeur, J., On minimal triangle-free 6-chromatic graphs, J. Graph Theory, 93, 34-48 (2020) · Zbl 1495.05094 · doi:10.1002/jgt.22467
[11] Goedgebeur, J., Huang, S., Ju, Y., Merkel, O.: Colouring graphs with no induced six-vertex path or diamond. In: International Computing and Combinatorics Conference, COCOON: Tainan, pp. 319-329. Springer, Taiwan (2021) · Zbl 07670473
[12] Jensen, T.; Royle, G., Small graphs with chromatic number 5: a computer search, J. Graph Theory, 19, 107-116 (1995) · Zbl 0821.05023 · doi:10.1002/jgt.3190190111
[13] Jiang, Y.; Liang, M.; Xu, X., Bounds for some generalized vertex Folkman numbers, J. Comb. Math. Comb. Comput., 110, 241-247 (2019) · Zbl 1452.05063
[14] Lange, A.; Radziszowski, S.; Xu, X., Use of MAX-CUT for Ramsey Arrowing of Triangles, J. Comb. Math. Comb. Comput., 88, 61-71 (2014) · Zbl 1293.05113
[15] Lathrop, J.; Radziszowski, S., Computing the Folkman Number \(F_v(2,2,2,2,2;4)\), J. Comb. Math. Comb. Comput., 78, 119-128 (2011) · Zbl 1234.05162
[16] Łuczak, T.; Ruciński, A.; Urbański, S., On minimal Folkman graphs (Graph Theory Conference, Kazimierz Dolny, 1997), Discrete Math., 236, 245-262 (2001) · Zbl 0995.05102 · doi:10.1016/S0012-365X(00)00445-3
[17] McKay, B.D.: nauty User’s Guide (Version 2.7), the first nauty Technical Report TR-CS-90-02, Department of Computer Science, Australian National University (1990). The 2021 version of nauty software and documentation is available at http://cs.anu.edu.au/ bdm/nauty
[18] Nenov, N., An example of a 15-vertex Ramsey \((3, 3)\)-graph with clique number 4 (in Russian), C. R. Acad. Bulg. Sci., 34, 1487-1489 (1981) · Zbl 0489.05041
[19] Nenov, N.: The chromatic number of any 10-vertex graph without 4-cliques is at most 4 (in Russian). C.R. Acad. Bulg. Sci. 37(3), 301-304 (1984). See also letter to the editor, On the small graphs with chromatic number 5 without 4 cliques, Discrete Mathematics188, 297-298 (1998)
[20] Nenov, N., On a class of vertex Folkman graphs, Annu. Univ. Sofia Fac. Math. Inform., 94, 15-25 (2000) · Zbl 1079.05511
[21] Nenov, N., On the triangle vertex Folkman numbers, Discrete Math., 271, 327-334 (2003) · Zbl 1030.05079 · doi:10.1016/S0012-365X(03)00134-1
[22] Nenov, N., On the vertex Folkman numbers \(F_v(2,\cdots ,2; q)\), Serdica Math. J., 35, 3, 251-271 (2009) · Zbl 1224.05344
[23] Nenov, N.: On the vertex Folkman numbers \(F_v(\underbrace{2, \cdots , 2}_r; r-1)\) and \(F_v(\underbrace{2, \cdots , 2}_r; r-2)\). Ann. Univ. Sofia Fac. Math. Inform. 101, 5-17 (2013). arXiv:0903.3151 · Zbl 1474.05279
[24] Nešetřil, J.; Rödl, V., Partitions of vertices, Comment. Math. Univ. Carol., 17, 85-95 (1976) · Zbl 0344.05150
[25] Nešetřil, J.; Rödl, V., The Ramsey property for graphs with forbidden complete subgraphs, J. Comb. Theory Ser. B, 20, 243-249 (1976) · Zbl 0329.05115 · doi:10.1016/0095-8956(76)90015-0
[26] Nešetřil, J.; Rödl, V., Simple proof of the existence of restricted Ramsey graphs by means of a partite construction, Combinatorica, 1, 2, 199-202 (1981) · Zbl 0491.05044 · doi:10.1007/BF02579274
[27] Picollelli, M., The diamond-free process, Random Struct. Algorithms, 45, 513-551 (2014) · Zbl 1303.05179 · doi:10.1002/rsa.20517
[28] Piwakowski, K.; Radziszowski, S.; Urbański, S., Computation of the Folkman number \(F_e(3,3;5)\), J. Graph Theory, 32, 41-49 (1999) · Zbl 0935.05041 · doi:10.1002/(SICI)1097-0118(199909)32:1<41::AID-JGT4>3.0.CO;2-P
[29] Radziszowski, S.: Unpublished results from computations (2010-2015)
[30] Radziszowski, S.: Small Ramsey Numbers. Electronic Journal of Combinatorics, Dynamic Survey DS1, revision #16, 116 (2021). http://www.combinatorics.org/ · Zbl 0953.05048
[31] Rödl, V.; Sauer, N., The Ramsey property for families of graphs which exclude a given graph, Can. J. Math., 44, 5, 1050-1060 (1992) · Zbl 0766.05058 · doi:10.4153/CJM-1992-064-7
[32] Seidel, J.J.: Strongly regular graphs. In: Bollobás, B. (ed.) Surveys in Combinatorics, 2nd edn, London Math. Soc. Lecture Note Series, vol. 38, pp. 157-180. Cambridge U.P. (1979) · Zbl 0431.05018
[33] Xu, X., Luo, H., Shao, Z.: Upper and lower bounds for \(F_v(4,4;5)\). Electron. J. Comb. N34(17), 8 (2010). http://www.combinatorics.org · Zbl 1204.05060
[34] Xu, X.; Liang, M.; Radziszowski, S., On the nonexistence of some generalized Folkman numbers, Graphs Comb., 34, 1101-1110 (2018) · Zbl 1402.05083 · doi:10.1007/s00373-018-1935-3
[35] Xu, X.; Shao, Z., On the lower bound for \(F_v(k, k;k+1)\) and \(F_e(3,4;5)\), Utilitas Math., 81, 187-192 (2010) · Zbl 1207.05148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.