×

Ulam-Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay. (English) Zbl 1517.34105

Summary: We explore a new kind of Caputo-type fractional fuzzy stochastic differential equations (FFSDEs) with delay. We establish the existence result of FFSDEs with delay by monotone iterative technique combined with the method of upper and lower solutions, and then the uniqueness is proved. Subsequently, we study the Ulam-Hyers (U-H) stability. Finally, three examples with numerical simulations are provided to illustrate the theoretical results.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K36 Fuzzy functional-differential equations
34K50 Stochastic functional-differential equations
34K27 Perturbations of functional-differential equations
34K07 Theoretical approximation of solutions to functional-differential equations
Full Text: DOI

References:

[1] Miller, K. S.; Ross, B., An introduction to the fractional calculus and fractional differential equations (1993), A Wiley-Interscience Publication: A Wiley-Interscience Publication Hoboken NJ USA · Zbl 0789.26002
[2] Podlubny, I.; Thimann, K. V., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1999), Academic Press: Academic Press Cambridge UK · Zbl 0924.34008
[3] Hilfer, R., Applications of fractional calculus in physics (2000), World Scientic: World Scientic Singapore · Zbl 0998.26002
[4] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations, 204 (2006), Elsevier: Elsevier Amsterdam, The Netherlands · Zbl 1092.45003
[5] Sabatier, J.; Argawal, A., Advances in fractional calculus (2007), Springer-Verlag: Springer-Verlag New York
[6] Zhou, Y.; Wang, J. R.; Zhang, L., Basic theory of fractional differential equations (2014), World Scientific: World Scientific Singapore · Zbl 1336.34001
[7] Agarwal, R.; Hristova, S.; O’Regan, D., Non-instantaneous impulses in differential equations (2017), Springer: Springer Cham · Zbl 1426.34001
[8] Agarwal, P.; Agarwal, P. P.; Ruzhansky, M., Special functions and analysis of differential equations (2020), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton
[9] Ali, A.; Sarwar, M.; Shah, K.; Abdeljawad, T., Study of coupled system of fractional hybrid differential equations via the prior estimate method, Fractals, 30, 8, Article 2240213 pp. (2022) · Zbl 1515.34008
[10] Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.; Bates, J., The role of fractional calculus in modeling biological phenomena: a review, Commun Nonlinear Sci Numer Simul, 51, 141-159 (2017) · Zbl 1467.92050
[11] Shah, K.; Abdeljawad, T.; Alrabaiah, H., On coupled system of drug therapy via piecewise equations, Fractals, 30, 8, Article 2240206 pp. (2022) · Zbl 1515.34052
[12] Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Commun Nonlinear Sci Numer Simul, 64, 213-231 (2018) · Zbl 1509.26005
[13] Shah, K.; Seadawy, A. R.; Mahmoud, A. B., On theoretical analysis of nonlinear fractional order partial benney equations under nonsingular kernel, Open Phys, 20, 587-595 (2022)
[14] Goldfain, E., Fractional dynamics and the standard model for particle physics, Commun Nonlinear Sci Numer Simul, 13, 1397-1404 (2008) · Zbl 1221.81175
[15] Sobczyk, K., Stochastic differential equations: with applications to physics and engineering (2001), Springer: Springer Berlin
[16] Heston, S. L., A closed-form solution for options with stochastic volatility withapplications to bond and currency options, Rev Financ Stud, 6, 2, 327-343 (1993) · Zbl 1384.35131
[17] Kleinert, H., Gauge fields in condensed matter. I: Superflow and vortex lines, 1-742, II: Stresses and defects, 743-1456 (1989), World Scientific: World Scientific Singapore
[18] Kleinert, H., Multivalued fields in condensed matter, electrodynamics and gravitation (2008), World Scientific: World Scientific Singapore · Zbl 1157.70001
[19] Malinowski, M. T., Some properties of strong solutions to stochastic fuzzy differential equations, Inform Sci, 252, 62-80 (2013) · Zbl 1325.60092
[20] Malinowski, M. T., Itô type stochastic fuzzy differential equations with delay, Syst Control Lett, 61, 692-701 (2012) · Zbl 1250.93116
[21] Itô, K., On stochastic differential equations (1951), Mem Amer: Math Soc · Zbl 0054.05803
[22] Zadeh, L. A., Fuzzy sets, Inf Control, 8, 338-353 (1965) · Zbl 0139.24606
[23] Agarwal, R. P.; Lakshmikanthama, V.; Nieto, J. J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal, 72, 2859-2862 (2010) · Zbl 1188.34005
[24] Kim, J. H., On fuzzy stochastic differential equations, J Korean Math Soc, 42, 1, 153-169 (2005) · Zbl 1071.60060
[25] Malinowski, M. T., Stochastic fuzzy differential equations of a nonincreasing type, Commun Nonlinear Sci Numer Simul, 33, 99-117 (2016) · Zbl 1510.60053
[26] Malinowski, M. T., Fuzzy and set-valued stochastic differential equations with local Lipschitz condition, IEEE Trans Fuzzy Syst, 23, 5, 1891-1898 (2015)
[27] Priyadharsini, J.; Balasubramaniam, P., Solvability of fuzzy fractional stochastic Pantograph differential system, Iran J Fuzzy Syst, 19, 1, 47-60 (2022) · Zbl 1505.34116
[28] Ulam, S. M., Problems in modern mathematics (1940), John Wiley and Sons: John Wiley and Sons New York, NY, USA · Zbl 0137.24201
[29] Hyers, D. H., On the stability of the linear functional equation, Proc Natl Acad Sci USA, 27, 222-224 (1941) · JFM 67.0424.01
[30] Aoki, T., On the stability of the linear transformation in Banach spaces, J Math Soc Japan, 2, 64-66 (1950) · Zbl 0040.35501
[31] Rassias, T. M., On the stability of the linear mapping in Banach spaces, Proc Am Math Soc, 72, 297-300 (1978) · Zbl 0398.47040
[32] Hyers, D. H.; Isac, G.; Rassias, T. M., Stability of functional equations in several variables (1998), Birkhauser: Birkhauser Boston · Zbl 0907.39025
[33] Sahoo, P. K.; Kannappan, P., Introduction to functional equations (2011), CRC Press: CRC Press Boca Raton · Zbl 1223.39012
[34] Jung, S. M., Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis (2011), Springer: Springer New York · Zbl 1221.39038
[35] Vu, H.; Hoa, N. V.; An, T., Stability for initial value problems of fuzzy Volterra integro-differential equation with fractional order derivative, J Intell Fuzzy Syst, 37, 4, 5669-5688 (2019)
[36] Vu, H.; An, T.; Hoa, N. V., Ulam-Hyers stability of uncertain functional differential equation in fuzzy setting with Caputo-Hadamard fractional derivative concept, J Intell Fuzzy Syst, 38, 2, 2245-2259 (2020)
[37] Hoa, N. V., On the stability for implicit uncertain fractional integral equations with fuzzy concept, Iran J Fuzzy Syst, 18, 1, 185-201 (2021) · Zbl 1458.45003
[38] Vu, H.; Hoa, N. V., Hyers-Ulam stability of fuzzy fractional Volterra integral equations with the kernel \(\psi \)-function via successive approximation method, Fuzzy Set Syst, 419, 67-98 (2021) · Zbl 1522.45002
[39] Vu, H.; Hoa, N. V., Non-instantaneous impulses interval-valued fractional differential equations with Caputo-Katugampola fractional derivative concept, Fuzzy Set Syst, 404, 111-140 (2021) · Zbl 1464.34011
[40] Wang, X.; Luo, D. F.; Zhu, Q. X., Ulam-Hyers stability of Caputo type fuzzy fractional differential equations with time-delays, Chaos Solitons Fractals, 156, Article 111822 pp. (2022) · Zbl 1506.34102
[41] Luo, D. F.; Abdeljawad, T.; Luo, Z. G., Ulam-Hyers stability results for a novel nonlinear nabla Caputo fractional variable-order difference system, Turk J Math, 45, 1, 456-470 (2021) · Zbl 1506.39012
[42] Luo, D. F.; Luo, Z. G., Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Math Slovaca, 70, 5, 1231-1248 (2020) · Zbl 1490.74036
[43] Luo, D. F.; Shah, K.; Luo, Z. G., On the novel Ulam-Hyers stability for a class of nonlinear \(\psi \)-Hilfer fractional differential equation with time-varying delays, Mediterr J Math, 16, 5, 112 (2019) · Zbl 1429.34080
[44] Liu, K.; Wang, J. R.; Zhou, Y.; O’Regan, D., Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos Solitons Fractals, 132, Article 109534 pp. (2020) · Zbl 1434.34014
[45] Wang, J. R.; Shah, K.; Ali, A., Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations, Math Methods Appl Sci, 41, 6, 2392-2402 (2018) · Zbl 1390.34030
[46] Wang, J. R.; Li, X. Z., A uniform method to Ulam-Hyers stability for some linear fractional equations, Mediterr J Math, 13, 2, 625-635 (2016) · Zbl 1337.26020
[47] Wang, J. R.; Li, X. Z., Ulam-Hyers stability of fractional Langevin equations, Appl Math Comput, 258, 72-83 (2015) · Zbl 1338.39047
[48] Hoa, N. V., Existence results for extremal solutions of interval fractional functional integro-differential equations, Fuzzy Set Syst, 347, 29-53 (2018) · Zbl 1397.34136
[49] Mazandarani, M.; Pariz, N.; Kamyad, A. V., Granular differentiability of fuzzy-number-valued functions, IEEE Trans Fuzzy Syst, 26, 1, 310-323 (2018)
[50] Hoa, N. V.; Vu, H.; Duc, T. M., Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Set Syst, 375, 70-99 (2019) · Zbl 1423.34014
[51] Hoa, N. V.; Lupulescu, V.; O’Regan, D., A note on initial value problems for fractional fuzzy differential equations, Fuzzy Set Syst, 347, 54-69 (2018) · Zbl 1397.34013
[52] Rodríguez-López, R., Monotone method for fuzzy differential equations, Fuzzy Set Syst, 159, 2047-2076 (2008) · Zbl 1225.34023
[53] Ahmadova, A.; Mahmudov, N. I., Existence and uniqueness results for a class of fractional stochastic neutral differential equations, Chaos Solitons Fractals, 139, Article 110253 pp. (2020) · Zbl 1490.34094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.