×

Reaction-diffusion models for a class of infinite-dimensional nonlinear stochastic differential equations. (English) Zbl 1516.60043

The authors establish the existence of solutions to a class of nonlinear stochastic differential equations in an infinite-dimensional space, with diffusion corresponding to a given transition kernel. These equations can be used to model a reaction-diffusion system associated for instance with chemical reactions or population dynamics.

MSC:

60J25 Continuous-time Markov processes on general state spaces
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
35K57 Reaction-diffusion equations

References:

[1] Andjel, E., Invariant measures for the zero range process, Ann. Probab., 10, 3, 525-547 (1982) · Zbl 0492.60096 · doi:10.1214/aop/1176993765
[2] Billingsley., P.: Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. A Wiley-Interscience Publication · Zbl 0944.60003
[3] Blount, D., Diffusion limits for a nonlinear density dependent space-time population model, Ann. Probab., 24, 2, 639-659 (1996) · Zbl 0868.60078 · doi:10.1214/aop/1039639357
[4] da Costa, C.; da Costa, BFP; Jara, M., Reaction-diffusion models: from particle systems to sde’s, Stoch Process Appl, 129, 4411-4430 (2018) · Zbl 1443.60032 · doi:10.1016/j.spa.2018.12.004
[5] Ethier, S., and Kurtz, T.: Markov processes—characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, (1986) · Zbl 0592.60049
[6] Jacod, J.; Shiryaev, A., Limit Theorems for Stochastic Processes (2013), Berlin: Springer Science & Business Media, Berlin · Zbl 0635.60021
[7] Karatzas, I., and Shreve, S.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer New York, 2nd ed edition, (1998) · Zbl 0734.60060
[8] Kipnis, C., and Landim, C.: Scaling Limits of Interacting Particle Systems, volume 320 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg, 1 edition, (1999) · Zbl 0927.60002
[9] Liggett, T.: Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften, vol. 276. Springer, Berlin Heidelberg, (2005) · Zbl 1103.82016
[10] Liggett, T.: Continuous Time Markov Processes: An Introduction. Graduate studies in mathematics. American Mathematical Society, (2010) · Zbl 1205.60002
[11] Liggett, T.; Spitzer, F., Ergodic theorems for coupled random walks and other systems with locally interacting components, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 56, 443-468 (1981) · Zbl 0444.60096 · doi:10.1007/BF00531427
[12] Nicolis, G.; Prigogine, I., Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations (1977), Hoboken: A Wiley-Interscience publication, Wiley, Hoboken · Zbl 0363.93005
[13] Yamada, T.; Watanabe, S., On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11, 1, 155-167 (1971) · Zbl 0236.60037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.