×

Generalizations of mock theta functions and radial limits. (English) Zbl 1515.11020

Summary: In the last letter to Hardy, S. Ramanujan [Collected Papers. Cambridge: Cambridge University Press (1927; JFM 53.0030.02); Reprint New York: Chelsea (1962; Zbl 0639.01023)] introduced seventeen functions defined by \(q\)-series convergent for \(|q|<1\) with a complex variable \(q\), and called these functions “mock theta functions”. Subsequently, mock theta functions were widely studied in the literature. In the survey of B. Gordon and R. J. McIntosh [A survey of classical mock theta functions, Partitions, \(q\)-series, and modular forms, Dev. Math. 23, 95–144 (2012; Zbl 1246.33006)], they showed that the odd (resp. even) order mock theta functions are related to the function \(g_3(x,q)\) (resp. \(g_2(x,q))\). These two functions are usually called “universal mock theta functions”. D. R. Hickerson and E. T. Mortenson [Proc. Lond. Math. Soc. (3) 109, No. 2, 382–422 (2014; Zbl 1367.11047)] expressed all the classical mock theta functions and the two universal mock theta functions in terms of Appell-Lerch sums. In this paper, based on some \(q\)-series identities, we find four functions, and express them in terms of Appell-Lerch sums. For example, \[ 1+(xq^{-1}-x^{-1}q)\sum\limits_{n=0}^{\infty}\frac{(-1;q)_{2n}q^n}{(xq^{-1},x^{-1}q;q^2)_{n+1}}=2m(x,q^2,q). \] Then we establish some identities related to these functions and the universal mock theta function \(g_2(x,q)\). These relations imply that all the classical mock theta functions can be expressed in terms of these four functions. Furthermore, by means of \(q\)-series identities and some properties of Appell-Lerch sums, we derive four radial limit results related to these functions.

MSC:

11B65 Binomial coefficients; factorials; \(q\)-identities
11F27 Theta series; Weil representation; theta correspondences
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
Full Text: DOI

References:

[1] Andrews, George E., The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 113-134 (1986) · Zbl 0593.10018 · doi:10.2307/2000275
[2] Andrews, George E., Ramanujan’s lost notebook. Part I, xiv+437 pp. (2005), Springer, New York · Zbl 1075.11001
[3] Andrews, George E., Ramanujan’s lost notebook. Part V, xii+430 pp. (2018), Springer, Cham · Zbl 1416.11001 · doi:10.1007/978-3-319-77834-1
[4] Bajpai, J., Bilateral series and Ramanujan’s radial limits, Proc. Amer. Math. Soc., 479-492 (2015) · Zbl 1316.11035 · doi:10.1090/S0002-9939-2014-12249-0
[5] Berkovich, Alexander, Some observations on Dyson’s new symmetries of partitions, J. Combin. Theory Ser. A, 61-93 (2002) · Zbl 1016.05003 · doi:10.1006/jcta.2002.3281
[6] Bringmann, Kathrin, Partial theta functions and mock modular forms as \(q\)-hypergeometric series, Ramanujan J., 295-310 (2012) · Zbl 1283.11077 · doi:10.1007/s11139-012-9370-1
[7] Bringmann, Kathrin, Radial limits of mock theta functions, Res. Math. Sci., Art. 17, 18 pp. (2015) · Zbl 1379.11048 · doi:10.1186/s40687-015-0035-8
[8] Carroll, Greg, Universal mock theta functions as quantum Jacobi forms, Res. Math. Sci., Paper No. 6, 15 pp. (2019) · Zbl 1470.11097 · doi:10.1007/s40687-018-0169-6
[9] Dyson, F. J., Some guesses in the theory of partitions, Eureka, 10-15 (1944)
[10] Folsom, Amanda, Mock theta functions and quantum modular forms, Forum Math. Pi, e2, 27 pp. (2013) · Zbl 1294.11083 · doi:10.1017/fmp.2013.3
[11] Folsom, Amanda, Ramanujan 125. Ramanujan’s radial limits, Contemp. Math., 91-102 (2014), Amer. Math. Soc., Providence, RI · Zbl 1359.11064 · doi:10.1090/conm/627/12534
[12] Garvan, F. G., Universal mock theta functions and two-variable Hecke-Rogers identities, Ramanujan J., 267-296 (2015) · Zbl 1380.11091 · doi:10.1007/s11139-014-9624-1
[13] Gasper, George, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, xxvi+428 pp. (2004), Cambridge University Press, Cambridge · Zbl 1129.33005 · doi:10.1017/CBO9780511526251
[14] Gordon, Basil, Partitions, \(q\)-series, and modular forms. A survey of classical mock theta functions, Dev. Math., 95-144 (2012), Springer, New York · Zbl 1246.33006 · doi:10.1007/978-1-4614-0028-8\_9
[15] Gu, Nancy S. S., Families of multisums as mock theta functions, Adv. in Appl. Math., 98-124 (2016) · Zbl 1401.11092 · doi:10.1016/j.aam.2016.04.003
[16] Hickerson, Dean, A proof of the mock theta conjectures, Invent. Math., 639-660 (1988) · Zbl 0661.10059 · doi:10.1007/BF01394279
[17] Hickerson, Dean R., Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I, Proc. Lond. Math. Soc. (3), 382-422 (2014) · Zbl 1367.11047 · doi:10.1112/plms/pdu007
[18] Jang, Min-Joo, Radial limits of the universal mock theta function \(g_3\), Proc. Amer. Math. Soc., 925-935 (2017) · Zbl 1421.11033 · doi:10.1090/proc/13065
[19] Kang, Soon-Yi, Mock Jacobi forms in basic hypergeometric series, Compos. Math., 553-565 (2009) · Zbl 1233.11049 · doi:10.1112/S0010437X09004060
[20] M. Lerch, Pozn\'amky \(k\) theorii funkc\'i elliptick\'ych, Rozpravy Cesk\'e Akademie C\'isare Frantiska Josefa pro vedy, slovesnost a umen\'i v praze, 24 (1892), 465-480.
[21] M. Lerch, Nov\'a analogie rady theta a nekter\'e zvl\'astn\'i hypergeometrick\'e rady Heineovy, Rozpravy, 3 (1893), 1-10.
[22] Liu, Zhi-Guo, Some operator identities and \(q\)-series transformation formulas, Discrete Math., 119-139 (2003) · Zbl 1021.05010 · doi:10.1016/S0012-365X(02)00626-X
[23] Lovejoy, Jeremy, Rank and conjugation for the Frobenius representation of an overpartition, Ann. Comb., 321-334 (2005) · Zbl 1114.11081 · doi:10.1007/s00026-005-0260-8
[24] Lovejoy, Jeremy, Bailey pairs and indefinite quadratic forms, J. Math. Anal. Appl., 1002-1013 (2014) · Zbl 1320.33025 · doi:10.1016/j.jmaa.2013.09.009
[25] Lovejoy, Jeremy, \(M_2\)-rank differences for partitions without repeated odd parts, J. Th\'{e}or. Nombres Bordeaux, 313-334 (2009) · Zbl 1270.11103
[26] Lovejoy, Jeremy, The Bailey chain and mock theta functions, Adv. Math., 442-458 (2013) · Zbl 1290.33019 · doi:10.1016/j.aim.2013.02.005
[27] Lovejoy, Jeremy, \(q\)-hypergeometric double sums as mock theta functions, Pacific J. Math., 151-162 (2013) · Zbl 1303.33017 · doi:10.2140/pjm.2013.264.151
[28] McIntosh, Richard J., The \(H\) and \(K\) family of mock theta functions, Canad. J. Math., 935-960 (2012) · Zbl 1264.33022 · doi:10.4153/CJM-2011-066-0
[29] McIntosh, Richard J., Some identities for Appell-Lerch sums and a universal mock theta function, Ramanujan J., 767-779 (2018) · Zbl 1426.11044 · doi:10.1007/s11139-016-9869-y
[30] Mortenson, Eric T., On the dual nature of partial theta functions and Appell-Lerch sums, Adv. Math., 236-260 (2014) · Zbl 1367.11048 · doi:10.1016/j.aim.2014.07.018
[31] Mortenson, Eric, Ramanujan’s radial limits and mixed mock modular bilateral \(q\)-hypergeometric series, Proc. Edinb. Math. Soc. (2), 787-799 (2016) · Zbl 1407.11037 · doi:10.1017/S0013091515000425
[32] S. Ramanujan, Collected Papers, Cambridge Univ. Press, 1927; Reprinted, Chelsea, New York, 1962. · JFM 53.0030.02
[33] Ramanujan, Srinivasa, The lost notebook and other unpublished papers, xxviii+419 pp. (1988), Springer-Verlag, Berlin; Narosa Publishing House, New Delhi · Zbl 0639.01023
[34] Watson, G. N., The Final Problem : An Account of the Mock Theta Functions, J. London Math. Soc., 55-80 (1936) · Zbl 0013.11502 · doi:10.1112/jlms/s1-11.1.55
[35] Watson, G. N., The Mock Theta Functions (2), Proc. London Math. Soc. (2), 274-304 (1936) · Zbl 0015.30402 · doi:10.1112/plms/s2-42.1.274
[36] Zudilin, Wadim, On three theorems of Folsom, Ono and Rhoades, Proc. Amer. Math. Soc., 1471-1476 (2015) · Zbl 1311.11026 · doi:10.1090/S0002-9939-2014-12364-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.